BharatiVidyapeeth University College of Engineering Department of Mechanical Engineering M.Tech. (CAD/CAM) CBCS 2015 Course

Semester I							Тс	otal Dura otal Mark otal Credi	s: 500		Week
Subjects	Sch (H	ching eme rs) Week		Exar	nination S	Scheme (Ma	arks)		Sch	nation eme dits)	Total Credits
	L	Р	Theory	Unit Test	Atten dance	Tutorial /Assign ments	TW	Pract/ Orals	тн	TH/ PR/ OR	
Computer Aided Design	4	4	60	20	10	10	-	50	4	2	6
Modeling and Simulation	4	4	60	20	10	10	-	50	4	2	6
Computer Integrated Manufacturing	4	-	60	20	10	10	-	-	4	-	4
Product Design and Development	4	-	60	20	10	10	-	-	4	-	4
Total	16	8	240	80	40	40	-	100	16	4	20

Semester II								Total Du Total Ma Total Cre	ırks: 50	0	s/Week
Subjects	Sch (H	ching eme rs) Week		Exar	nination S	icheme (Ma	arks)		Sch	nation eme dits)	Total Credits
	L	Р	Theory	Unit Test	Atten dance	Tutorial /Assign ments	TW	Pract/ Orals	тн	TH/ PR/ OR	
Advanced Finite Element Methods	4	4	60	20	10	10	-	50	4	2	6
Control Systems	4	4	60	20	10	10	-	50	4	2	6
Precession Engineering	4	-	60	20	10	10	-	-	4	-	4
Optimization for Engineering Design	4	-	60	20	10	10	-	-	4	-	4
Total	16	8	240	80	40	40	-	100	16	4	20

Semester III								Total Du Total Ma Total Cre	rks:37	5	/Week
Subjects	Sch (H	ching eme rs) Week		Exar	nination S	icheme (Ma	arks)		Sch	nation eme dits)	Total Credits
	L	Р	Theory	Unit Test	Atten dance	Tutorial /Assign ments	TW	Pract/ Orals	тн	TH/ PR/ OR	
Elective I	4	-	60	20	10	10	-	-	4	-	4
Elective II	4	-	60	20	10	10	-	-	4	-	4
Self-Study paper I	4	-	60	20	10	10	-	-	4	-	4
Dissertation Stage I	-	7	-	-	-	-	25	25	-	15	15
Seminar	-	5	-	-	-	-	25	-	-	7	7
Total	12	12	180	60	30	30	50	25	12	22	34

Elective I

- 1. Advanced Stress analysis
- 2. Manufacturing Information Systems
- 3. Computational Fluid Dynamics
- 4. Micro-electro Mechanical Systems

Self-Study Paper I

- 1. Advanced Manufacturing Processes
- 2. Machine Condition Monitoring and Diagnostics
- 3. Product Lifecycle Management
- 4. Robust Design of Product & Process
- 5. Computer Aided Process Planning

Elective II

- 1. Composite Materials
- 2. Analysis and Synthesis of Mechanisms
- 3. Artificial Intelligence
- 4. Design of Experiment
- 6. Flexible Manufacturing System
- 7. Product Design & Process Planning
- 8. Experimental Technique and Data analysis
- 9. Tribology in Design
- 10. Manufacturing System and Simulation

Semester IV								Total Du Total Ma Total Cre	rks: 32	5	/Week
Subjects	Sch (H	ching eme rs) Week		Exar	nination S	Scheme (Ma	arks)		Sch	nation eme dits)	Total Credits
	L	Р	Theory	Unit Test	Atten dance	Tutorial /Assign ments	TW	Pract/ Orals	тн	TH/ PR/ OR	
Self-Study paper II	4	-	60	20	10	10	-	-	4	-	4
Dissertation Stage II	-	10	-	-	-	-	150	75	-	32	32
Total	4	10	60	20	10	10	150	75	4	32	36

Self-Study Paper II

- 1. CAD/CAM Practices in Metal Forming
- 2. Optimization Techniques
- 3. Robotics and Sensors
- 4. Rapid Prototyping
- 5. Design for Manufacture

- 6. Theory of Elasticity & Plasticity
- 7. Design of Dies
- 8. Integrated Product Design & Development
- 9. Design for Manufacturing & Assembly
- 10. Concurrent Engineering

Computer Aided Design

TEACHING SCHEME

Lectures : 04 Hrs/week Practicals : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Pract/Oral	: 50 Marks
Total Credits	: 06

(08 Hours)

Definition of CAD Tools, Types of system, CAD/CAM system evaluation Criteria, Graphics standards, functional areas of CAD, Modeling and viewing, software documentation, efficient use of CAD software.

Wire frame modeling -Types of mathematical representation of curves, wire frame models, wire frame entities, parametric representation of synthetic curves - Hermite cubic splines, Bezier curves, B-Splines, rational curves - NURBS.

Unit II

SURFACE MODELING

Mathematical representation of surfaces, Surface model, Surface entities, surface representation, Parametric representation of surfaces, plane surface, ruled surface, surface of revolution, Tabulated surface.

Unit III

SURFACE MODELING

Hermite Bicubic surface, Bezier surface, B-Spline surface, COONs surface, Blending surface, surface. Surface manipulation - Displaying, Segmentation, Trimming, Sculptured Intersection, Transformations - 2D and 3D, Orthogonal and Perspective transformations.

Unit IV

SOLID MODELLING

Solid Representation - Boundary Representation (B-rep), Constructive Solid Geometry (CSG) and other methods, Design Applications: Mechanical tolerances, Mass property calculations, CAD database structure.

CAD/CAM Data Exchange: Evaluation of data- exchange formats, IGES data representations and structure, STEP Architecture, implementation, ACIS & DXF.

Unit V

ADVANCED MODELING CONCEPTS:

Feature Based Modeling, Assembly Modeling, Behavioral Modeling, Conceptual Design & Topdown Design. Techniques for visual realism - hidden line - Surface removal - Algorithms for shading and Rendering. Parametric and variational modeling, Feature recognition, Design by Tolerance Modeling, Tolerance representation - specification, features, Assembly and analysis and synthesis, AI in Design.

Unit VI

COLLABORATIVE ENGINEERING:

Collaborative Design, Principles, Approaches, Tools, Design Systems. Product Data Management (PDM).

Text Books/ References

1. Ibrahim Zeid, CAD/CAM Theory and Practice, McGraw Hill international.

2. P. N. Rao, CAD/CAM Tata McGraw Hill.

3. Foley, Van Dam, Feiner and Hughes, Computer Graphics Principles and Practice,

CAD TOOLS

Unit I

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

second edition, Addison-Wesley, 2000.

4. Martenson, E. Micheal, Geometric Modelling, John Wiley & Sons, 1995.

5. Hill Jr, F.S., Computer Graphics using Open GL, Pearson Education, 2003.

6. Singeresu S. Rao, Engineering Optimization-Theory and Practice, New Age International Limited Publishers, 2000.

7. Johnson Ray, C. Optimum Design of Mechanical Elements, Wiley, John & Sons, 1981.

8. P. Radhakrishnan, S. Subramanyam, CAD/CAM/CIM, New Age International.

9. V. Ramamurti, Computer Aided Mechanical Design and Analysis, Tata McGraw Hill-1992.

Termwork

Eight Assignments using either of UG, SolidWorks, CATIA, ProE, Hyperwork

Syllabus for Unit Test

Unit Test I Unit I,II,III Unit Test II Unit IV,V,VI

Modeling and Simulation

TEACHING SCHEME

Lectures : 04 Hrs/week

Practicals : 04 Hrs/week

Unit I

System Concept and Modeling

Physical model, Mathematical model, Types of mathematical model, Dynamic Versus Static Models, Continuous-Time Versus Discrete-Time, Dynamic Models, Quantitative Versus Qualitative Models, Mechanical system modeling examples.

Simulation Basics, When Simulation Is the Appropriate Tool, when Simulation Is Not Appropriate, Advantages and Disadvantages of Simulation, Areas of Application, Steps in a Simulation Study

(08 Hours)

Simulation Basics, When Simulation Is the Appropriate Tool, when Simulation Is Not Appropriate, Advantages and Disadvantages of Simulation, Areas of Application, Steps in a Simulation Study Simulation and analytical methods, Basic nature of simulation, The simulation process, Types of system simulation, Generation of random numbers .Monte Carlo Simulation.

Unit III

Probability as Used in Simulation

Basic Probability Concepts, Discrete Random Variable, Expected Value and Variance of a Discrete Random Variable, Measure of Probability Function, Continuous Random Variable, Exponential Distribution, Mean and Variance of Continuous Distribution, Normal Distribution.

System Simulation Introduction, Simulation of Pure pursuit problem, exponentional growth model, simulation of water

reservoir system, Trajectory simulation, suspension system, simulation of pendulum.

Unit V

Unit IV

Simulation Models

Discrete Simulation, Continuous System Simulation. Simulation of Queuing Systems, Inventory Control Models

Unit VI

Design and Evaluation of Simulation Experiments.

Introduction, development of simulation experiments, principles of verification, validation and accreditation, Simulation experimentation, classical experimental design, validation of simulation experiments, evaluation of simulation experiments. Simulation Languages

Text Books/ References

- 1. Robert E. Shannon, "System Simulation The art and science", Prentice Hall, New Jersey, 1995.
- 2. D.S. Hira, "System Simulation", S.Chand and company Ltd, New Delhi, 2001.
- 3. Geoffrey Gordon ,System Simulation; Prentice Hall.
- 4. Robert E. Shannon ; System Simulation: The Art and Science ;Prentice Hall
- 5. J. Schwarzenbach and K.F. Gill Edward Arnold; System Modelling and Control

EXAMINATION SCHEME

Theory : 60 Marks Duration : 03 Hours Internal Assessment : 40 Marks Pract/Oral : 50 Marks Total Credits : 06

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

Unit II **Simulation Concepts**

6. M Close and Dean K. Frederick; Modeling and Analysis of Dynamic Systems ;Houghton Mifflin

Term Work

- 1. Simulation of water reservoir system.
- 2. Trajectory simulation.
- 3. Suspension system.
- Simulation of pendulum.
 Discrete Simulation,
- 6. Continuous System Simulation.
- Simulation of Queuing Systems,
 Inventory Control Models

Syllabus for Unit Test

Unit Test I Unit I,II,III Unit Test II Unit IV,V,VI

Computer Integrated Manufacturing

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks

Total Credits : 04

(08 Hours)

(08 Hours)

Models, EDM, Product Data Management (PDM), Advantage of PDM., Collaboration

Unit III

WORK CELL & FLEXIBLE MANUFACTURING SYSTEM

Manufacturing cell, Group Technology, Cellular Manufacturing. DNC system and transfer of program from PC to machine. Introduction to FMS, Manufacturing integration model, flexible manufacturing strategy, Components of Flexible Manufacturing-Pallets and fixtures, machining centers, inspection equipment, material handling stations, storage system, In-process storage, manually operated stations, allied operation centers

Unit IV

INTEGRATIVE MANUFACTURING PLANNING AND CONTROL

Role of integrative manufacturing in CAD/CAM integration, Over view of production control -Forecasting, Master production schedule, Capacity planning, M.R.P., Order release, Shop-floor control, Quality assurance, Planning and control systems, Cellular manufacturing, JIT manufacturing philosophy.

Unit V

WEB BASED MANUFACTURING

Engineering.

Integrating process with web, Process management through and control web, Applications of web based manufacturing, casting, machining, forming & forging.

Unit VI

FUTURE TRENDS IN MANUFACTURING SYSTEMS

Lean Manufacturing: Definition, Principles of Lean Manufacturing, Characteristics of Lean Manufacturing, Value of Product, Continuous Improvement, Focus on Waste, Relationship of Waste to Profit, Four Functions of Lean Production, Performance Measures, The Supply Chain, Benefits of Lean Manufacturing. Introduction to Agile and Web Based Manufacturing systems.

Text Books/ References

1. Paul G. Ranky, The Design and Operation of FMS, I.F.S. Publications 1983

2. Harrington J, Computer Integrated Manufacturing Krieger Publications 1979

3. Richard N. Shover, An Analysis of CAD/CAM Application with Introduction to C.I.M. Prentice hall

4. David Bedworth et.al Computer Integrated Design and Manufacturing McGraw hill 1991

Unit I

Unit II

CONCEPT OF CIM

CIM DATABASE

Introduction to CIM, Types of Manufacturing, CIM hardware and software, Elements of CIM, Product development through CIM Design Activities in a networked environment, networking in a manufacturing company, hardware elements of networking.

Introduction, Database requirements of CIM, Database, Database management, Database

(08 Hours)

(08 Hours)

(08 Hours)

5. Scolz B. Reiter C.I.M Interfaces Chapman & Hall 1992

6. David L. Goetsch, Fundamental of CIM Technology, Delmar Publication 1988

7. Groover, M.P., (2004), Automation, Production Systems & Computer Integrated Manufacturing second edition, Pearson Education ISBN: 81-7808-511-9

8. Groover, Weiss, Nagel, Audrey, Industrial Robotics-Technology, Programming and Applications, McGraw Hill.

9. Nanua Singh, Systems Approach to Computer Integrated Design and Manufacturing, John Wiley Publications.

10. Alavudeen, Venkateshwaran, Computer Integrated Manufacturing, Prentice- Hall India

Syllabus for Unit Test

Unit Test I Unit I,II,III Unit Test II Unit IV,V,VI

		Product Design And Development	
<u>TEACHIN</u>	G SCHEME	EXAMINATIO	N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Total Credits	: 04
Unit I			(08 Hours)
Introducti	on		(08 110018)
	development. Development development:	ration and cost of product development, the challenges Processes and Organizations: A generic development proce the front-end process, adopting the generic product developm evelopment process, product development organizations,	ess, concept ent process,
Unit II	organizationi		(08 Hours)
Product P	lanning		
	the relative i Product Spec	erms of customer needs, organize the needs into a hierarch mportance of the needs and reflect on the results and the proc ifications: What are specifications, when are specifications e arget specifications, setting the final specifications.	cess.
<u>Unit III</u>			(08 Hours)
	Generation	· ·	
	internally, exp Concept Selec Concept Test choose a su	of concept generation clarify the problem, search extern plore systematically, reflect on the results and the process. action: Overview of methodology, concept screening, and concept ing: Define the purpose of concept test, choose a survey urvey format, communicate the concept, measure custome result, reflect on the results and the process.	ot scoring, population,
<u>Unit IV</u>			(08 Hours)
Product A	Architecture		
		oduct architecture, implications of the architecture, esta variety and supply chain considerations, platform planning, rel sues.	-
<u>Unit V</u>	1		(08 Hours)
Industrial	Design		
	-	e need for industrial design, the impact of industrial desig	
	design proce	ss, managing the industrial design process, assessing the	e quality of

	industrial des	sign.		
		•	finition, estimation of manufacturi	ng cost, reducing the cost
	of componen	ts, assembly, sup	oporting production, impact of DFN	A on other factors.
	Prototyping:	Prototyping bas	sics, principles of prototyping, te	chnologies, planning for
	prototypes.			
<u>Unit VI</u>				(08 Hours)
Product D	Development E	conomics		
	trade-offs, in Managing Pro	nfluence of qua ojects: Understa	sis, base case financial mode,. Se alitative factors on project suc anding and representing task, ba execution, postmortem project eva	cess, qualitative analysis. aseline project planning,
Text Book	s/ References			
	1. Produc McGrawH	-	Development - Karl.T.Ulrich, Stev	ven D Eppinger - Irwin
	McGrawn	1111 - 2000.		
			afacturing - A C Chitale and R C Gupta	a, PH1, - 3 rd Edition, 2003.
	2. Produc	t Design and Manu	ufacturing - A C Chitale and R C Gupta nt - Timjones. Butterworth Heinmann	
	 Produc New Pr Produc 	t Design and Manu roduct Development		-Oxford. UCI -1997
	 Produc New Pr Produc 	t Design and Manu roduct Development t Design for Manu	nt - Timjones. Butterworth Heinmann	-Oxford. UCI -1997
Syllabus fo	 Produc New Pr Produc 	t Design and Manu roduct Development t Design for Manu	nt - Timjones. Butterworth Heinmann	-Oxford. UCI -1997
Syllabus fo	 Produc New Pr Produc Winston K 	t Design and Manu roduct Development t Design for Manu	nt - Timjones. Butterworth Heinmann	-Oxford. UCI -1997
Syllabus f	 Produc New Pr Produc Winston K 	t Design and Manu roduct Development t Design for Manu	nt - Timjones. Butterworth Heinmann	-Oxford. UCI -1997

Semester II

	K60	504: ADVANCE FINITE ELEMENT METHOD	
TEACHIN	G SCHEME	EXAMINATIO	N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
Practicals	: 02 Hrs/week	Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Term Work	: 25 Marks
		Pract/Oral	: 25 Marks
		Total Credits	: 05
Unit I			(08 Hours)
	Method, Stress	s of FEM, Weak formulation, Variational methods of approximation- strain relations, shape functions- linear and quadratic. Approxima of solution, p & h refinement	
Unit II	· · · · ·		(08 Hours)
	constraints, Co properties of s	aal problems – Finite element modeling, Basic boundary conditio nvergence of results, Potential energy approach, Global stiff tiffness matrix, load vector, Penalty approach, Elimination approac duals-Least Square Method, Subdomain Method, Collocation Method	ness matrix, h, Methods of
Unit III			(08 Hours)
	Quadrilateral,	Analysis of 2-D problems. Basic boundary value problems in 2-I Higher order elements. Constant strain triangle. Introduction to phoff's theory, Mindlin plate element.	plate bending
<u>Unit IV</u>			(08 Hours)
	Isoperimetric e	Formulation – Natural Co-ordinate system, Lagrangian interpolation element, Numerical Integration Newton Cotes formula, Guass Quadrate imensions, triangular elements, rectangular elements.	ure formula in
<u>Unit V</u>			(08 Hours)
	Solution of Ei Method, Subspa Forced Vibratio	rsis, Formulation of Dynamic problems, Consistent and Lumped Mass I gen Value Problems. Transformation Method, Jacobi Method, Ve ace Iteration Method. on- Steady State and Transient vibration analysis, Analysis of damp Scheme, Direct Integration Method, Implicit and Explicit numerical me	ector Iteration
Unit VI			(08 Hours)
		I	(00 110013)
	Special Topics: substructuring.	- Linear Buckling Analysis, Adaptive Finite Element Technique .Sub	modeling and

Term Wo	rk
	Term work shall consists of three assignment based on above syllabus. Four computer program assignments to be developed for FEA. Using programming language. Two assignment of structural Analysis using FEA Software
Oral/Prac	tical
	Term work and Oral will be based on above syllabus.
Text Book	ss/ References
	 K. J. Bathe, "Finite Element Procedures", PHI R. D. Cook, D. S. Malus, M. E. Plesha, "Concepts and Applications of Finite Element Method Analysis", John Wiley J. N. Reddy, "An introduction to Finite Element Method Analysis", MGH Desai & Abel, "Introduction to Finite Element Methods" S. Riaseleharan, "FEA in Engineering Design" D. L. Logan, "A course in the Finite Element Method", Third Edition, Thomson Learning T. R. Chandrupatia, A. D. Belegundu, "Introduction to Finite Elements in Engineering", Third Edition, PHI Seshu P, "Text Book of Finite Element Analysis", PHI Learning PvtLtd. New Delhi.
<u>Syllabus f</u>	or Unit Test
	Unit Test I Unit I,II,III Unit Test II Unit IV,V,VI

		Control Systems		
<u>TEACHIN</u>	IG SCHEME	EXAMIN	NATIO	N SCHEME
Lectures	: 04 Hrs/week	T	heory	: 60 Marks
Practicals	: 04 Hrs/week	Dui	ration	: 03 Hours
		Internal Assess	sment	: 40 Marks
		Pract	t/Oral	: 50 Marks
		Total C	redits	: 06
Unit I				(08 Hours)
Introduction	control systems control actions:	stem control systems. Classification of control system, basic charac Mathematical modeling of control systems, concept of tran -On-Off Control, Proportional, Integral, Derivative and PID, system and their applications.	sfer fur	nction. Basic
Unit II				(08 Hours)
	onse Analysis of	Control System		(00 110013)
	order system. S	st and Second order system, Time Domain specifications. Step teady-state errors, static error constants, steady state, analysis tep. Ramp and parabolic inputs.		
Unit III				(08 Hours)
Control Sy	stem Stability A			
	concepts of stab absolute stabilit	f control systems according to types of systems, Stability Anal- bility. The Routh-Hurwitz's Stability criteria. Stability in the sen sy, autonomous systems, the invariance principle, linear system s systems, linear time varying systems and linearization.	ise of L	yapunov and
Unit IV				(08 Hours)
Root Locu		7 Response Methods		
	frequency respo frequency doma	ponse Analysis, Frequency domain specifications Correlation onse. Polar Plots. Bode Plots, Nyquist Plots stability in frequency ain methods of design, compensation and their realization in ing system performance.	y domai	n,
Unit V				(08 Hours)
State Spac	e Modeling			
	physical and p homogeneous techniques. Tra	e, state variable, state model State space method. State space hase variables, decomposition of transfer function, diagonali and non homogenous equations, zero and pole placement nsfer function from state model. Controllability and observabil matrix, state controllability matrix, state observability matrix.	isation. tusing	solutions of state space
Unit VI				(08 Hours)
	r Control Syster	ns		(
	Discrete time sy control systems characterization Compensator, L	vstems and Z-Transformation methods, State space analysis, Opt , Non-Linear Systems Phase plane analysis: Phase portraits, Sing . Compensation (Introduction only): Types of compensator, sele .ead, Lag and Lag-Lead compensation. Control system Compone Synchros, Potentiometer, amplifiers	gular po ection of	oints f

Fext Boo	ks/ References
	1. Control System Engineering: by Nagrath LT. and Gopal .M., Wiley Eastern Lid.
	2. Modem Control engineering: by K.Ogata, Prentice Hall.
	3. Benjamin C. Kuo, Automatic Control Systems, Pearson education, seventh edition.
	4. Madan Gopal, Control Systems Principles and Design, Tata McGraw Hill, seventh editi 1997
	5. Nise, control system Engineering, John wiley& sons, 3rd edition
	6.Norman Nise, Control System Engineering, Prentice Hall India, Fourth Edition
	7. Anand Kumar, —Control System Theoryl, Prentice Hall India.
	8. M.Vidyasagar, "Nonlinear systems analysis", Second Edition, Prentice Hall, 1993
	9. H.Khalil, "Nonlinear Systems", Macmillan Publishing Company, NY, 1992.
	10.A. Isidori, —Nonlinear Control Systems 3rd edition, Springer Verlag, London, 1995.
	11. Jack Golten, Andy Verwer, "Control System Design and Simulation", McGraw Hill 12. F.H.Raven, "Automatic Control Engineering", Third edition, McGraw Hill, 1983.
	13. Schaum Series," Theory and Problems of Feedback and Control Systems". (MGH)
	14. Dr.N.K.Jain,"Automatic Control Systems Engineering", Dhanpat Rai Publishing
	Company.
Term W	rk
	Two Experiments on PID controller
	Four computer based assignments using MATLAB
Syllabus	for Unit Test
	Unit Test I Unit I,II,III

		Precession Engineering	
<u>TEACHIN</u>	G SCHEME	EXAMINATIO	N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Total Credits	: 04
Unit I			(08 Hours)
	Of Accuracy		(0000000)
	Accuracy of n	concept of accuracy of machine tools - spindle and displacement umerical control systems - Errors due to numerical interpolation - ystem and velocity lags.	
<u>Unit II</u>			(08 Hours)
Geometric	Dimensioning A	And Tolerancing	· · ·
	tolerance of po	measurement and application of form tolerances - datum system an osition Tolerance zone conversions - Surfaces, features, features of , oddly configured and curved surfaces as datum features, equalizing	size, datum
<u>Unit III</u>			(08 Hours)
Surface an	d form metrolog		
		ness, waviness cylindricity etc. Methods of improving accuracy & s reed vibration on accuracy, Dimensional wear of cutting tools and its	
<u>Unit IV</u>			(08 Hours)
Precision N	Measuring Syste	ms	
	nanometer acc telescope - LA roughness usin in-situ measu measurement of Straightness and electronic device	h - legal basis for length measurement – Traceability - Processin uracies - LASER light source - LASER interferometer - LASER ASER micrometer-on-line and in-process measurements of diameter og LASER - Micro holes and topography measurements In prement of position of processing point-Post process and of dimensional features and surface-mechanical and optical measured d flatness measurement – Optoelectronic Measurement Systems in Me ces contact and non contact types Applications - Tool wear measures ess - Pattern generation studies.	R alignment and surface processing or on-machine ring systems. trology, Opto
<u>Unit V</u>			(08 Hours)
Nano-Posi	tioning Systems	Of Nano Accuracy & Repeatability	
		for moving elements - Servo control systems for tool positioning - Co precision position control.	mputer Aided
<u>Unit VI</u>			(08 Hours)
Computer	Integrated Qua	lity Assurance	
	*	tal quality control & quality assurance - Zero defects-POKA-YO ata using computer- CNC CMM applications - Computer Aided meas D-CMM	
Text Rook	s/ References		
TEXT DOOK	1. MUR	THY,R.L., - " Precision Engineering in Manufacturing ional(P) Limited, publishers, 1996.	g ", New

	2. JAMESD. MEADOWS, - "Geometric Dimensioning and Tolerancing ", Marcel
	Dekker Inc.1995.
	3. "Dimensioning and tolerancing of mass production", Prentice Hall, 1983
	4. WATSON .J., " Optoelectronics " - Van Nostrand Rein hold(UK)Co ltd., 1988
	5. ROBERT.G. SEIPPEL, - "Optoelectronics for technology and engineering ", Prentice Hall NewJersey, 1989
	6. ULRICH-REMBOLD, ARMBRUSTER AND ULZMANN-" Interface technology for computer controlled manufacturing processes ", Marcel Dekker Pub. New York, 1993
	7. Engg.Metrlogy by Shotbolt.
	8. THOMAS.G.G "Engineering metrology", Butterworth PUB.1974.
	9. NORIO TANIGUCHI, - " Nano Technology ", Oxford university, Press, 1996.
Syllabus for	r Unit Test
~	

L			
	Unit Test I	Unit I,II,III	
	Unit Test II	Unit IV,V,VI	

Optimization for Engineering Design				
TEACHIN	G SCHEME		EXAMINATIO	ON SCHEME
Lectures	: 04 Hrs/week		Theory	: 60 Marks
			Duration	: 03 Hours
			Internal Assessment	: 40 Marks
			Total Credits	:04
<u>Unit I</u>				(08 Hours)
Introducti				
	· ·		esign variables, constraints, objective function, vans, Optimization algorithms	riable bound.
<u>Unit II</u>				(08 Hours)
Single Var	iable Optimiza			
			methods, region elimination method, point estim ng using optimization techniques.	nate method,
<u>Unit III</u>				(08 Hours)
Multivaria	ble Optimization			
	search, Hooke		search, direct search method- evolutionary optimize arch method, gradient based methods,-steepest des nethod.	
Unit IV		, 1		(08 Hours)
Constraine	ed Optimization	1	· · · · ·	
			mation methods, sensitivity analysis, direct search for the second secon	or constrained
<u>Unit V</u>				(08 Hours)
Specialized	l Algorithms			
	Integerprogram	nming, penaltyfunc	tion, branch-and-bound method Geometric programm	
<u>Unit VI</u>				(08 Hours)
Nontraditi	onal Optimizat			
	-	hm, simulated ann simulated ann	ealing, global optimization using steepest descent, ge	netic
Text Book	s/ References			
		Optimization for Deb, PHI Learning	Engineering Design: Algorithms and Example Pvt. Ltd., 2004	s-Kalyanmoy
	2. C	ptimization Con	cepts and Applications in Engineering-Ashok D. I Irupatla, Cambridge University Press, 2011	Belegundu,
	3. A	Introduction to	o Numerical Methods and Optimization Technic	ques-Richard
		V. Daniels, North		
	4. C	ptimization: the	ory and applications-S. S. Rao, Wiley Eastern, 19	179
Syllabus fo	or Unit Test			
Synabus II				
	Unit Test I	Unit I,II,III		
	Unit Test II	Unit IV,V,VI		

Semester III

		Elective I : Advanced Stress analysis	
TEACHING SCHEME EXAMINATION SCH			N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		T + 1 C - 1'	0.4
		Total Credits	: 04
<u>Unit I</u>			(08 Hours
Theory of	Elasticity		
<u>Unit II</u> Theory of	evaluation of th Plasticity Different criter concentration f analysis for pla	ation of stresses in flat rectangular plates with different clamp and lo e stresses in the flat and circular plate with center hole/holes using stress ions for three dimensional stress analysis using plasticity, evaluat factors in different geometries using plasticity theorem, practical probl sticity-stress in the sharp groove of the shaft, stress in the L shaped	ion of stres bracket under
	cantilever load,	strain rate effects on highly deformable materials and stress calculation	
<u>Unit III</u>		ring Plastics and Composites	(08 Hours
	of composites analysis of com	nsional stress analysis, wear and tear of plastics, impact properties of p (fiber reinforced plastics), evaluation of elastic properties of comp posite circular tubes (internal and external pressure), flat plate fixed at ad, uniformly distributed load	bosites, stress the edges and
Unit IV			(08 Hours
Plate bend	Bending of plat bending in two center, bending	e to cylindrical surface, bending of a long uniformly loaded rectangul perpendicular directions, bending of circular plates loaded symme of circular plates of variable thickness, circular plate with circular l oaded and load distributed along inner and outer edges	trically w.r.t hole at center
<u>Unit V</u>			(08 Hours
Contact st	Geometry of co point contact, st	ontact surfaces, method of computing contact stresses and deflection ress for two bodies in line contact with load normal to contact area and contact area, gear contacts, contacts between cam and follower, ball bea	d load norma
Unit VI			(08 Hours
Experimen	configuration, photoelasticity,	is nalysis, analysis techniques, strain gauges, types of strain gauge instrumentation, characteristics of strain gauge measurement elements of polariscope, simple and circular polariscope, fringes poclinic and isochromatic fringe patterns, evaluation of stresses from	, theory o in dark and

Text Book	s/ References				
	1. Advanced Mechanics of Materials – Cook and Young, Prentice Hall				
	2. Advanced Strength and Applied Stress Analysis – Richard G. Budynas, McGraw Hill				
	3. Advanced Mechanics of Materials – Boresi, Schmidt, Sidebottom, Willey				
	4. Theory	of Elasticity – Timoshenko and Goodier, Mc Graw Hill			
	5. Advand	ced Strength of Materials, Vol. 1, 2 – Timoshenko, CBS			
	6. Advanced Strength of Materials – Den Harteg				
	7. Experimental Stress Analysis – Dally & Riley				
	8. Theory of Plates and Shells – Timoshenko Mc Graw Hill				
	9. The Mathematical Theory of Plasticity - R. Hill, Oxford University Press, 1998				
Syllabus fo	or Unit Test				
	Unit Test I	Unit I,II,III			
	Unit Test II	Unit IV,V,VI			

Elective I: Management Information Systems

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

(08 Hours)

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

Unit I

Knowledge based system, Introduction, Development of data base and knowledge bases, knowledge representing paradigms - rule based, object oriented, semantic nets and frames, uncertainty, fuzzy logic, neural nets. (08 Hours)

Interference mechanism, goals, control strategies forward and backward chaining, conflict resolution, explanation, blackboard model.

Implementation issues: knowledge acquisition, coding, expert system shells, PROLOG, and LISP

Unit IV

Unit V

Selected applications in manufacturing: product design, process planning and scheduling, robot movement, factory layout, defect analysis, diagnostic maintenance, quality control.

(08 Hours)

(08 Hours)

(08 Hours)

Knowledge based approaches blackboard architecture, other for engineering design, knowledge based approaches.

<u>Unit VI</u>

Artificial intelligence.

Term Work

Three case studies from the following

- Ÿ Information and knowledge requirement in Manufacturing Function
- Ÿ Inventory control systems
- Ÿ Production Planning and Control System Scheduling and capacity requirement • calculation.
- Ÿ Design information systems.

Oral/Practical

Based on above termwork.

<u>Unit III</u>

<u>Unit II</u>

Text Books/ References

- Kerr R., "Knowledge Based Manufacturing Management", Addision Wiley, 1991 Ÿ Addis T. R., "Designing Knowledge Based System", Prentice Hall, 1985 1.
- 2.
- 3. Ÿ Roltson D. W., "Principles of Artificial Intelligence and Expert Systems Development", McGraw Hill Publications, 1988
- 4. Ÿ Chung P. W. H., Love Grove G., "Industrial Engineering Applications of AI and Expert Systems", Gordon & Breach Science Pub., 1993
- 5. Ÿ Maus R. and Keyes J., "Hand Book of Expert Systems in Manufacturing", McGraw Hill Publications, 1991
- 6. Ÿ C. S. Krishnamurthy, S. Rajeev, "Computer Aided Design" Narosa Pub. House

Syllabus for Unit Test

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Elective I: Computational Fluid Dynamics

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	:	60 Marks
Duration	:	03 Hours
Internal Assessment	:	40 Marks
Total Credits	:	04

(08 Hours)

(08 Hours)

Introduction to Fluid Dynamics, Concepts of Fluid Flow, Pressure distribution in fluids, Reynolds transport theorem, Integral form of conservation equations, Differential form of conservation equations, Different Types of Flows, Euler and Navier Stokes equations, Properties of supersonic and subsonic flows, Flow characteristics over various bodies.

Geometric Modeling and CAD Repairing Geometric transformations, Parametric representation of curves and surfaces, Concept of topology, Surface modeling, Faceted models, Solid modeling. Creation of water tight geometry, Faceted Boolean operations, Dependent and independent CAD errors.

(08 Hours)

Introduction to CFD, Philosophy of CFD, Governing equations of fluid dynamics and there physical meaning, Mathematical behavior of governing equations and the impact on CFD, Simple CFD techniques and CFL condition.

Numerical Methods in CFD, Finite Difference, Finite Volume, and Finite Element, Upwind and downwind schemes, Simple and Simpler schemes, Higher order methods, Implicit and explicit methods, Study and transient solutions

Surface mesh generation, Surface mesh repair, Volume grid generation, Volume mesh improvement, mesh smoothing algorithms, grid clustering and quality checks for volume mesh. Adaptive, Moving and Hybrid Grids, Need for adaptive and, moving grids, Tet, pyramid, prism, and hex grids, using various elements in combination.

Unit VI

Introduction to Turbulence Modeling, Introduction and background, Algebraic models, One equation models, Two equation models, Near wall treatment, Reynolds stress models, Introduction to Multiphase Modeling Fundamentals of multiphase flows, Eulerian - Lagrangian (ELAG) approach, Eulerian-Eulerian (E2P) approach, Volume Of Fraction (VOF) approach.

Term Work

Minimum four assignments on above topic to study CFD analysis. Use of Any CFD software like FLUENT - Basic issues, model development, and post process sing.

Unit I

Unit II

Unit III

Unit IV

Unit V

(08 Hours)

(08 Hours)

Oral/Practical

Based on Term work. Text Books/ References

- 1. John D. Anderson, "Computational Fluid Dynamics: The Basics with Applications", McGraw Hill, 1995
- 2. V. V. Ranade, "Computational Flow Moeling for Chemical Reactor Engineering", Process Engineering Science, Volume 5, 2001
- Patrick Knupp and Stanly Steinberg, "Fundamentals of Grid Generation", CRC Press, 1994
- 4. D. C. Wilcox, "Turbulence Modelling for CFD", 1993
- 5. Pieter Wesseling, "An Introduction to Multigrid Methods", John Wiley & Sons, 1992
- 6. J. F.Thompson, Z. U., A. Warsi and C. W. Mastin, "Numerical Grid Generation: Foundations and Applications", North Holland, 1985
- 7. S. V. Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, 1981
- 8. Thomas B. Gatski, M. Yousuff Hussaini, John L. Lumley,, "Simulation and Modelling of Turbulent Flows", Eds., Oxford University Press, 1996
- 9. Laney, C. B., "Computational Gas Dynamics", Cambridge Uni. Press, 1998

Syllabus for Unit Test

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

	El	ective I : Micro-electro Mechanical Systems			
TEACHIN	TEACHING SCHEME EXAMINATION SCHEM				
Lectures	: 04 Hrs/week	Theory	: 60 Marks		
		Duration	: 03 Hours		
		Internal Assessment	: 40 Marks		
		Total Credits	: 04		
		Total Credits	. 04		
<u>Unit I</u>			(08 Hours)		
Introducti	on				
Unit II	magnetic MEM Nanotechnology	echanical MEMS, thermal MEMS, micro-opto electromechanical s S, radio frequency (RF) MEMS, micro fluidic systems, bio and chemo y - definition, nanoscale, consequences of the nanoscale for technol d applications of nano electromechanical systems (NEMS)	devices,		
	rication Process	es & Materials			
	Fabrication Pro- and sacrificial coating, therma sputtering; Dop micromachining	m arsenide, quartz, piezo-electric crystals, polymers, packaging ma cesses - Bulk micro manufacturing, photolithography, photoresists, stru materials, X-ray and electron beam lithography, Thin film depositi al oxidation, chemical vapour deposition (CVD), electron beam ev bing - diffusion, ionimplantation; Etching - wet etching, dry etching; g, bulk vs. surface micromachining; Wafer bonding - glass-frit, anot LIGA process and applications.	ictural ion - spin aporation, Surface		
<u>Unit III</u>			(08 Hours)		
Microsens	ors and actuator				
	thermopiles, th magnetic sense piezomechanics micropumps, m	etuation, Chemical sensors, Optical sensors, Pressure sensors, Therr ermistors, micromachined thermocouple probes, thermal flow sen or, Piezoelectric material as sensing and actuating elements - by Piezoactuators as grippers, microgrippers, micromotors, microval- nicroaccelerometers, microfluidics, shape memory alloy based optic ated MEMS relay, microspring thermal actuator, data storage cantilever	sors, MEMS capacitance, ves, cal switch, c.		
Unit IV	D '		(08 Hours)		
Microsyste		nto and selection of motorials, selection of manufacturing masses, selec	tion of		
	C	nts and selection of materials, selection of manufacturing process, selection technique, electromechanical system and packaging.	ction of		
Unit V	signar transadet	ion teeningue, electromeenameur system und puekaging.	(08 Hours)		
Nanomate	rials:		(00 110413)		
	Molecular buil synthesis of arti nanotubes -strue	ding blocks to nanostructures - fullerenes, nanoscaled biomolecu ificial nanostructures, molecular switches and logic gates, nanocompo- cture, single walled, multi walled, properties of carbon r sis, Potential applications of nano-structures.	sites; Carbon		
<u>Unit VI</u>			(08 Hours)		
Nanofinish		machining, magnetic abrasive finishing, magnetorheological finis ining, ion beam machining, chemical mechanical polishing, Nanon			

			sus bottom - up assembly, Visualisation, manipulation and Applications - in Energy, Tribology, Informatics, MDSicine,
	etc.		
Text B	ooks/ References		
	1. Bharat	Bhushan (Ed.), (2	2004), Handbook of Nanotechnology, Spinger-Verlag Berlin
	Heidelbe	rg New York, ISBN	3-540-01218-4
	2. Hsu, 7	Fai-Ran, (2003), M	EMS & MICROSYSTEMS: Design & Manufacture, TMH,
	ISBN:0-0)7-048709-X	
	Microma	nufacturing & Nan	MEMS, TMH, ISBN: 0-07-4454. Mahalik, N.P. (Ed.) (2006) notechnology, Springer India Pvt. Ltd., ISBN: 978-81-8128- age International, New Delhi)
		systems: Molecular 992), ISBN 047157	r Machinery, Manufacturing & Computation, K E Drexler 75186
	6. P.Rai- SPIE,199		book of Microlithography, Micromachining & Microfabrication
	7. David	Ferry, Transports in	Nanostructures, Cambridge University Press, 2000.
		Charles & Owen, N: 978-81-265-1099	Frank J., - Introduction to Nanotechnology, Wiley (India) Pvt
Syllabi	us for Unit Test		
	Unit Test I	Unit I,II,III	
	Unit Test II	Unit IV,V,VI	

		Elective II : Composite Materials	
TEACHIN	G SCHEME	EXAMINATIO	N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Total Credits	: 04
Unit I			(08 Hours)
	agents and she	reatoristics	(08 110013)
Dasic Cui	cepts and cha	characteristics of composite materials, overview of advantages and	limitations
	of composite n	naterials, significance and objectives, sciences and technology, types	
	classification of	typical composite materials, current status and future prospects.	(0.0.17
<u>Unit II</u>			(08 Hours)
Macrome		viours of lamina:	
		ations for anisotropic materials, engineering constants for orthotrop	
TT •/ TTT	materials, stress	s-strain relations for a lamina of arbitrary orientation, biaxial stren	
<u>Unit III</u>			(08 Hours)
Microme		iour of a lamina	C
		aterials approach to stiffness, elasticity approach to stiffness, compariso iffnes, mechanics of materials approach to strength.	on of
Unit IV	approaches to st	innes, mechanics of materials approach to strength.	(08 Hours)
			(08 Hours)
Hygrothe	rmal effects		
		ffects on mechanical behaviours, hygrothermal stress-strain relations, c sture expansion of unidirectional lamina	coefficients of
Unit V	thermal and mo		(08 Hours)
	ahaniaal haha	viours of a laminate	(00 110013)
Macrome			
		ation theory, lamina stress-strain behaviour, strain and stress variation ate forces and moments, special cases of laminate, interlaminar stresses	
Unit VI			(08 Hours)
	ure and testin	g of composite materials	
manuat	Manufacturing: pultrution, comp Testing: Determ volume ratio, c properties of un	Stamp moulding, diaphragm forming, thermoforming, filament wind pression moulding, injection moulding. nination of physical properties such as density, fibre volume ratio co-efficient of thermal expansion, determination of tensile, compressive idirectional lamina, determination of interlaminar and intralaminar characterisation of composites with stress concentration.	, void and shear
Text Book	s/ References		
	2. Enginee Oxford Un	ics of Composite Materials by R.M.Jones, McGrawhill-Kogakusha Ltd bring Mechanics of Composite Materials by Issac M.Daniel an iversity Press. s and Performance of Fiber Composites by B.D.Agarwal and I v & Sons.	d Ori Ishai,

Syllabus for Unit Test		
Unit Test I	Unit Test I	
Unit Test II	Unit Test II	

Elective II : Analysis and Synthesis of Mechanisms

TEACHING SCHEME

Lectures : 04 Hrs/week

Unit I

Introduction:

Review of fundamentals of kinematics, D. O. F; Multi loop kinematics chains, Gross motion concepts; Position analysis -Vector loop equations for four bar slider crank.

Unit II

Kinematic Analysis:.

Inverted slider crank - Geared five bar and six bar linkages; Analytical method for velocity and acceleration analysis - Four bar linkage jerk analysis - Plane complex mechanism

Unit III (08 Hours) **Path Curvature Theory:**

> Fixed and Moving centroids, inflection points and inflection circle; Graphical constructions -Cubic of stationary curvature; Dimensional synthesis - Function generation; path generation, motion generation.

Unit IV

Synthesis of Mechanisms

Graphical methods; Coupler; curve synthesis, design of six bar mechanisms. Algebraic methods. Application of instant centre in linkage design; Cam mechanism - Determination of optimum size of Cams.

Unit V

Dynamic of Mechanisms

Static force analysis with friction - Inertia force analysis - combined static and inertia force analysis; shaking force, Kinetostatic analysis.Introduction to force and moment; balancing of linkages. The Matrix Method.

Unit VI

Spatial Mechanism and Robotics:

Kinematic analysis of spatial RSSR mechanism; Denavit - Hartenberg parameters; Forward and inverse Kinematics of robotic manipulators.

Term Work

Practical in Use Of Mechanical Software Packages- Tutorials.

Oral/Practical

Based on Term work.

Theory : 60 Marks Duration : 03 Hours Internal Assessment : 40 Marks Total Credits : 04

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

EXAMINATION SCHEME

Text Books/ References

- 1. Ÿ Erdman A G & Sandor, G N, "Mechanism Design: Analysis and Synthesis", prentice hall of India
- 2. Ÿ Mallik, A K, Ghosh A, and Gunter Dittrich, "Kinematic Analysis and Synthesis of Mechanisms", CRC Press London
- 3. Ÿ Robert L Norton, "Design of Machinery" McGraw Hill Book Co.
- 4. Ÿ Robert HA, "Mechanical Design Systems Handbook", McGraw Hill Book Co.

Syllabus for Unit Test

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

		Elective II : Artificial Intelligence	
TEACHIN	TEACHING SCHEME EXAMINATION S		N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Total Credits	: 04
T			(09 11.0000)
<u>Unit I</u> Human an	d machina inta	lligança	(08 Hours)
numan an	d machine inte	ifth generation computing, programming in AI environment,	developing
		igence system, natural language processing, neural networks	
Unit II			(08 Hours)
	on to fuzzy lo	gic	
		ts in fuzzy set theory – operations of fuzzy sets – fuz	zy relational
	equations – p	propositional, predicate logic – inference – fuzzy logic princi	ples – fuzzy
	inference – fu	zzy rule based systems – fuzzification and defuzzification – type	S.
<u>Unit III</u>			(08 Hours)
Fuzzy logi	c applications		
		ntrollers – principles – various industrial applications of fuzzy lo	-
	•	y systems – fuzzy decision making – fuzzy classification – fu	uzzy pattern
	recognition – i	mage processing applications – fuzzy optimization.	
<u>Unit IV</u>			(08 Hours)
Introducti		neural networks	
		of neural networks – neural network architectures – learning	
	•	neural network architectures – standard back propagation a rious parameters – variations.	algorithms –
Unit V	Selection of va		(08 Hours)
	e memory		(00 110013)
ASSOCIATIV	-	nemory – exponential bidirectional associative memory	– adantive
	resonance the resonance the networks – in domain, colle	eory – introduction – adaptive resonance theory 1 eory 2 – applications – Kohen self organizing maps – counter dustrial applications. Expert system development: Definition ection of knowledge base, selection of inference mecha pert system development in design and manufacturing.	 adaptive propagation choice of
Unit VI			(08 Hours)
	application of	Al and expert systems	(
	Robotic vision and inspectio genetic algor annealing, tal	systems, image processing techniques, application to object n, automatic speech recognition. Recent advances: Funda ithms – hybrid systems – meta heuristic techniques like bu search, ant colony optimization, perpetual self organizi ms – applications in design and manufacturing	mentals of e simulated
Text Books	s/ References		

	1. Robert Levine et al, "A comprehensive guide to AI and expert systems", McGraw Hill Inc, 1986		
	2. Henry C. Mishkoff, "Understanding AI", BPB Publication, New Delhi, 1986		
	3. Peter Jackson, "Introduction to expert systems", First Indian Reprint, 2000, Addisor Wesley		
	4. Stuart Russell and Peter Norvig, "Artificial intelligence: a modern approach", Prentice Hall, 1995		
	5. Elaine Rich et al., "Artificial intelligence", McGraw Hill, 1995		
	6. Winston P H, "Artificial intelligence", Addison Wesley, Massachusetts, Third Edition, 1992		
Syllabus fo	or Unit Test		
	Unit Test I Unit I,II,III		

Unit Test II

Unit IV,V,VI

		Elective II : Design of Experiment	
TEACHIN	EACHING SCHEME EXAMINATION S		N SCHEME
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Tetal Credite	: 04
		Total Credits	: 04
<u>Unit I</u>			(08 Hours)
Introducti	on		
	Guidelines for	erimentation, Some Typical Applications of Experimental Design, Ba Designing Experiments, A Brief History of Statistical Design, Sun niques in Experimentation	nmary: Using
<u>Unit II</u>	mparative Expe	• · ·	(08 Hours)
	Introduction, B the Differences	asic Statistical Concepts, Sampling and Sampling Distributions, Infe in Means, Randomized Designs, Hypothesis Testing, Confidence Inte Comparing a Single Mean to a Specified Value	ervals, Choice
<u>Unit III</u>	ts with a Single		(08 Hours)
		as Fitted Values, Plots of Residuals Versus Other Variables, Practical egression Model, Comparisons Among Treatment Means ,Graphical	
<u>Unit IV</u>			(08 Hours)
Introducti	on to Factorial I		
	Statistical Analy Parameters, Ch	ns and Principles, The Advantage of Factorials, The Two-Factor Fac ysis of the Fixed Effects Model, Model Adequacy Checking, Estimati noice of Sample Size, The General Factorial Design, Fitting Respons king in a Factorial Design	ing the Model
<u>Unit V</u>			(08 Hours)
The 2 ^k Fac		e 2^2 Design, the 2^3 Design, the General 2^k Design, a Single Replic gns are Optimal Designs, The Addition of Center Points to the 2^k Desig	
Unit VI			(08 Hours)
	Second-Order I Surface, Ridge Designs for Fitt Response Surfa	Response Surface Methodology, The Method of Steepest Ascent, A Response Surface, Location of the Stationary Point, Characterizing Systems, Multiple Responses, Experimental Designs for Fitting Respo- ing the First-Order Model, Designs for Fitting the Second-Order Mode	Analysis of a the Response onse Surfaces,
Text Rook	s/ References		
TEAL DOOK	 Design Introdu 	a and analysis of experiments, Douglas C. Montgomery, Wiley, 2008 action to the Design And Analysis of Experiments, Geoffrey Mallin son, Arnold, 1994	Clarke, R. E.

	3. Expe	rimental Design and Statistics, Stephen Henry Miller, Methuen, 1975
Syllabus f	or Unit Test	
<u>Dynabas</u>		
	Unit Test I	Unit I,II,III
	Unit Test II	Unit IV,V,VI

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

of high

Theory : 60 Marks

Internal Assessment : 40 Marks Total Credits : 04

EXAMINATION SCHEME

Self Study Paper I : Advanced Manufacturing Processes

TEACHING SCHEME

Lectures : 04 Hrs/week

METAL CUTTING AND MECHANICS OF METAL CUTTING

Introduction to metal removal processes, Chip formation, forces acting on cutting tool and their measurement, Chip thickness, Theory of Ernest and Merchant, theory of Lee and Shafer, Tool wear and tool life, surface finish, thermal aspects, friction in metal cutting and testing of machine tools.

Unit II

ABRASIVE PROCESSES

Introduction, Grinding wheel-designation and selection, grinding process, grinding process parameters, creep feed grinding, honing, lapping and other finishing processes

Unit III

FORMING PROCESSES.

Sheet metal forming, punching, extrusion, coning. Plastic molding process, injection molding, blow molding, compression molding. Metal injection molding, powder injection molding, sintering process, and their applications

<u>Unit IV</u>

UNCONVENTIONAL MACHINING PROCESSES

Need for unconventional processes, Range of non conventional machining processes USM, WJM. AJM, chemical machining, Electrochemical machining, Electrolytic grinding, EDM, LBM, EBM, Plasma arc cutting.

HIGH SPEED MACHINING

Introduction to high speed machining, economics speed brief historical perspective, material properties at high strain rates, influence of machining, increasing speed on chip formation, stainless steel, aerospace aluminum and titanium and recommendations.

Unit VI

Unit V

Unit I

(08 Hours)

Duration : 03 Hours

GENERATIVE MANUFACTURING PROCESSES (GMP) FOR RAPID PROTOTYPING

General features and classification, Issues related to CAD and GMP software, Overviews of generative manufacturing processes, two dimensional layer-bylayer techniques and direct three-dimensional techniques for RP

Text Books/ References

- 1. G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, CRC Press.
- 2. E. M. Trent and P. K. Wright, Metal Cutting, Butterworth- Heinemann, Boston.
- 3. P. N. Rao, Manufacturing Technology, Tata Mc-Graw Hill.
- 4. D. A. Stephenson and J. S. Agapiou, Metal Cutting Theory and Practice, CRC Press
- 5. Amitabha Ghosh, Rapid Prototyping
- 6. Kalpak Jain S. and Schmid S. R., Manufacturing Processes for Engineering Materials, Addition Wesley,
- 7. Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, John Wiley & Sons.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Elective II : Machine Condition Monitoring and Diagnostics

TEACHING SCHEME

Lectures : 04 Hrs/week

Practicals : 02 Hrs/week

Unit I **Predictive Maintenance Techniques:**

Predictive maintenance basics, Maintenance philosophies, Evolution of maintenance philosophies, Plant machinery classification and recommendations, Principles of predictive maintenance, Predictive maintenance techniques, Vibration analysis - a key predictive maintenance technique.

Unit II

Unit III

Unit IV

Unit V

Data Acquisition:

Fundamentals of Vibrations:

Vibration basics, Spring-mass system: mass, stiffness, damping, System response, What is vibration? The nature of vibration, Harmonics, Limits and standards of vibration.

(08 Hours)

(08 Hours)

The fast Fourier transform (FFT) analysis, Time waveform analysis, Phase signal analysis, Spectral

Commonly witnessed machinery faults diagnosed by vibration analysis, correcting faults that cause vibration; Balancing, Alignment, Resonance vibration control with dynamic absorbers.

Unit VI

Oil and Particle Analysis Oil Fundamentals:

signal processes.

Signal Processing, Applications and Representation:

Machinery Fault Diagnosis Using Vibration Analysis:

Condition-based maintenance and oil analysis, Setting up an oil analysis program, Oil analysis sampling methods, Oil analysis - lubricant properties, Oil analysis - contaminants in lubricants, Particle analysis techniques, Alarm limits for various machines.

Term Work

Term work shall consists of Data acquisition using a velocity pickup. Data acquisition using an accelerometer.

mountings, Conversion of vibrations to electrical signal.

Theory : 60 Marks Duration : 03 Hours Internal Assessment : 40 Marks Term Work : 25 Marks Pract/Oral : 25 Marks Total Credits : 05

EXAMINATION SCHEME

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

Introduction, Collection of vibration signal - vibration transducers, characteristics and

Data acquisition of sound signals. Spectral analysis of velocity, acceleration noise signals. Experiment demonstrating balancing of rotating shaft shaft. Three assignments based on above syllabus.

Oral/Practical

Based on Term work.

Text Books/ References

- 1. Thomson, W. T., "Theory of Vibration with Applications", CBS Publishers and Distributors, New Delhi, 1990
- 2. Gupta K., "Introductory Course on Theory and Practice of Mechanical Vibrations", New Age International Ltd., 1984
- 3. J. S. Rao., "Vibratory Condition Monitoring of Machines", Narosa publishing house, New Delhi
- 4. Cyril M. Harris, Allan G. Piersol, "Shock and Vibration Handbook", McGraw-Hill Publishing Co.
- 5. C. Scheffer, Paresh Girdhar, "Practical Machinery Vibration Analysis and Predictive Maintenance", Newnes an imprint of Elsevier

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper I : Product Lifecycle Management

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

<u>Unit I</u>

Unit II

Product Life Cycle Environment

Background, Overview, Need, Benefits, Concept of Product Life Cycle. Components / Elements of PLM, Emergence of PLM, Significance of PLM, Customer Involvement. Product Data and Product Workflow, Company's PLM vision, The PLM Strategy, Principles for PLM strategy, Preparing for the PLM strategy, Developing a PLM strategy, Strategy identification and selection, Change Management for PLM.

(08 Hours)

Product Development Process

Integrated Product development process Conceive – Specification, Concept design, Design - Detailed design, Validation and analysis (simulation), Tool design, Realize - Plan manufacturing , Manufacture, Build/Assemble , Test (quality check) , Service - Sell and Deliver , Use , Maintain and Support, Dispose.

(08 Hours)

Unit III

Product Development Approaches

Bottom-up design, Top-down design, Front-loading design workflow, Design in context, Modular design. Concurrent engineering, partnership with supplier, collaborative and Internet based design, work structuring and team deployment, Product and process systemization, problem, identification and solving methodologies, improving product development solutions

<u>Unit IV</u>

Unit V

Product Modelling

Product Modelling - Definition of concepts - Fundamental issues - Role of Process chains and product models -Types of product models – model standardization efforts-types of process chains - Industrial demands. Foundation technologies and standards (e.g. visualization, collaboration and enterprise application integration),

(08 Hours)

(08 Hours)

Product Data Management (PDM) Technology

Product Data Management - An Introduction to Concepts, Benefits and

Terminology, PDM functions, definition of PDM and architectures systems, product data interchange, portal integration, PDM acquisition and implementation. Information authoring tools (e.g., MCAD, ECAD, and technical publishing), Core functions (e.g., data vaults, document and content management, workflow and program management), Functional applications (e.g., configuration Management)

(08 Hours)

<u>Unit VI</u>

Recent Advances

Intelligent Information Systems - Knowledge based product and process models - Applications of soft computing in product development process - Advanced database design for integrated manufacturing.

Text Books/ References

- 1. Product Life Cycle Management by Antti Saaksvuori, Anselmi Immonen, Springer, 1st Edition (Nov.5, 2003)
- 2. Product Design & Process Engineering, McGraw Hill Kogalkusha Ltd., Tokyo, 1974.
- 3. Product Design & Development by Kari Ulrich and Steven D. Eppinger, McGraw Hill International Edns, 1999.
- 4. Effective Product Design and Development by Stephen Rosenthol, Business One Orwin, Homewood, 1992 ISBN 1-55623-603-4.
- 5. Burden, Rodger PDM: Product Data Management, Resource Pub, 2003. ISBN 0970035225
- 6. Clements, Richard Barrett. Chapter 8 ("Design Control") and Chapter 9 ("Document Control") in Quality Manager's Complete Guide to ISO 9000, Prentice Hall, 1993. ISBN 013017534X

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper I: Robust Design of Product and Process

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	:	60 Marks
Duration	:	03 Hours
Internal Assessment	:	40 Marks
Total Credits	:	04

Steps

(08 Hours)

(08 Hours)

(08 Hours)

Robust

in

Unit III

Introduction to Taguchi's Experiment Design

Parameter Design according to Taguchi

Criteria for the Use of Experiment Design Methods, Applying Experiment Design Methods According To Situation; Problem Analysis and Empiric Parameter Reduction.Orthogonal Arrays, Graphical representation of factor combinations, linear graphs, Variance Analysis (ANOVA), Inner-Outer arrays Design.

Direct product design, indirect variance analysis, Product design with characteristic

Robustness Strategy & its primary tools: P-Diagram, Quality Measurement, Quality Loss

(08 Hours)

(08 Hours)

Data Analysis

Deterministic and random data, Uncertainty analysis, Tests for significance: Chi-square, Regression modeling, Direct and Interaction effects, ANOVA, F-test, Time Series analysis, Autocorrelation and Autoregressive modeling.

(08 Hours)

Response surface Methodology

Unit I

Concepts of Quality Engineering

Introduction to Robust Design

Taguchi's Approach to Quality, On-line and Off- line Quality Control, Difference from Classical Approach, Quality Loss Function, System Design, Parameter Design, Tolerance Design, Causes of Variation, Classification of Parameters, Parameter Design Strategy.

Function, Signal to Noise (S/N) Ratios, Orthogonal Arrays,

Parameter Design. Robust design and Six-Sigma for Lean Enterprises.

values, taking cost into account, Signal-to-noise ratio according to Taguchi.

Unit II

Unit IV

Unit V

Unit VI

Linear experiment designs, quadratic experiment designs.

Text Books/ References

- Montgomery D (2001). Design and Analysis of Experiments, 5th edition, Wiley
 Phadke, M (1989). Quality Engineering using Robust Design, Prentice Hall.
- 3. Ross, P (1996). Taguchi Techniques for Quality Engineering, 2nd edition, McGraw Hill.
- 4. J. Krottmaier, Optimizing Engineering Design, McGraw Hill Ltd.
- 5. A. Mitra, Quality Control and Improvement, Pearson Publications.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper I : Computer Aided Process Planning

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

(08 Hours)

INTRODUCTION

The Place of Process Planning in the Manufacturing cycle - Process Planning and Production Planning – Process Planning and Concurrent Engineering, CAPP, Group Technology.

Unit II

PART DESIGN REPRESENTATION

Design Drafting - Dimensioning - Conventional tolerancing - Geometric tolerancing -CAD - input / output devices - topology - Geometric transformation - Perspective transformation -Data structure - Geometric modelling for process planning - GT coding - The optiz system - The MICLASS system.

(08 Hours)

Unit III

PROCESS ENGINEERING AND PROCESS PLANNING

Experienced, based planning - Decision table and decision trees - Process capability analysis - Process Planning -Variant process planning - Generative approach - Forward and Backward planning, Input format.

Unit IV

COMPUTER AIDED PROCESS PLANNING SYSTEMS

Logical Design of a Process Planning - Implementation considerations -manufacturing system components, production Volume, No. of production families - CAM-I, CAPP, MIPLAN, APPAS, AUTOPLAN and PRO, CPPP.

Unit V

AN INTERGARTED PROCESS PLANNING SYSTEMS

Totally intergarted process planning systems - An Overview - Modulus structure -Data Structure, operation -Report Generation, Expert process planning.

(08 Hours)

Unit VI

Simulation

Major activities, purpose, simulation process, types methodology, simulation packages, process quality simulator, computer requirements trends, applications simulation of manufacturing systems.

Unit I

(08 Hours)

Text Books/ References

- 1. Gideon Halevi and Roland D. Weill, " Principles of Process Planning ", A logical approach, Chapman & Hall, 1995.
- 2. Tien-Chien Chang, Richard A.Wysk, "An Introduction to automated process planning systems ", Prentice Hall, 1985.Chang, T.C., " An Expert Process Planning System ", Prentice Hall, 1985.
- 4. Rao, " Computer Aided Mnufacturing ", Tata McGraw Hill Publishing Co., 2000.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper I : Flexible Manufacturing System

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

FMS definition and description, General FMS considerations, Manufacturing cells, Cellular versus Flexible Manufacturing.Systems Planning: Objective, introduction planning, preparation guidelines, the project team, supplier selection, system description and sizing, facility preparation planning, FMS layouts. Human resources: staff considerations, team work, communication and involvement, the supervisors role, personnel selection, job classifications, employee training.

<u>Unit II</u>

Unit I

Manufacturing's Driving Force

Evolution of Manufacturing Systems

Definition, description and characteristics. Just in-time manufacturing, definition and description, benefits and relationship to FMS, implementation cornerstones, quality and quantity application principles. Single manufacture Cell – design scheduling of jobs on single manufacturing cells. Group Technology: Concepts, classification and coding, benefits and relationship to FMS, design of group technology using rank order clustering technique.

(08 Hours)

(08 Hours)

<u>Unit III</u>

FMS Design

Using Bottleneck, Extended bottleneck models, Processing and Quality Assurance: Turning centres, Machining centre, construction and operations performed, axes, programming, and format information, work-holding and work-changing equipment, automated features and capabilities, cleaning and deburring – station types and operation importance to automated description, manufacturing, coordinate measuring types, construction and general function, operation cycle description, importance machines, to flexible cells and systems.

Unit IV

(08 Hours)

Automated movement and storage systems

AGVs, Robots, automated storage and retrieval systems, storage space design, queuing carousels and automatic work changers, coolant and chip Disposal and recovery systems, auxiliary support equipment, cutting tools and tool Management – introduction, getting control of cutting tools, Tool Management, tool strategies, data transfer, tool monitoring and fault detection, guidelines, work holding considerations, General fixturing, Modular fixturing. FMS and the relationship with workstations - Manual, automated and transfer lines design aspects.

FMS Software

Communications networks and Nanotechnology - general functions, and manufacturing hardware configuration, programmable logic controllers, cell controllers, usages, communications networks. FMS implementation.

(08 Hours)

Unit VI

FMS and Simulation

System issues - Types of software - specification and selection - Trends - Application of simulation - software -Manufacturing data systems - data flow -CAD/CAM considerations -Planning FMS database.

Text Books/ References

- Parrish, D.J., _Flexible Manufacturing', Butter Worths Heinemann, Oxford, 1993.
 Groover, M.P., _Automation, Production Systems and CIM', Prentice Hall India, 1989.
- 3. Kusiak, A., _Intelligent Manufacturing Systems', Prentice Hall, 1990.
- 4. Considine, D.M., & Considine, G.D., Standard Handbook of Industrial Automation',-Chapman & Hall, 1986

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper I : Product Design & Process Planning

TEACHING SCHEME

Lectures : 04 Hrs/week

Product design and process design functions

EXAMINATION SCHEME

Theory: 60 MarksDuration: 03 HoursInternal Assessment: 40 MarksTotal Credits: 04

(08 Hours)

Selection of a right product, essential factors of product design, Morphology of design, sources of new ideas for products, evaluation of new product ideas. Product innovation procedure-Flow chart. Qualifications of product design Engineer. Criteria for success/failure of a product. Value of appearance, colours and Laws of appearance.

(08 Hours)

Product reliability

Unit I

Unit II

Mortality Curve, Reliability systems, Manufacturing reliability and quality control.Patents: Definitions, classes of patents, applying for patents. Trademarks and copyrights. Cost and quality sensitivity of products, Elements of cost of a product, costing methods, cost reduction and cost control activities. Economic analysis, Break even analysis Charts. Value engineering in product design, creativity aspects and techniques. Procedures of value analysis – cost reduction, material and process selection.

(08 Hours)

(08 Hours)

(08 Hours)

Various manufacturing processes

Degree of accuracy and finish obtainable, process capability studies. Methods of improving tolerances. Basic product design rules for Casting, Forging, Machining, Sheet metal and Welding. Physical properties of engineering materials and their importance on products. Selection of plastics, rubber and ceramics for product design.

<u>Unit IV</u>

Unit III

Industrial ergonomics

Man-machine considerations, ease of maintenance. Ergonomic considerations in product design-Anthropometry, Design of controls, man-machine information exchange. Process sheet detail and their importance, Advanced techniques for higher productivity. Just-in-time and Kanban System. Modern approaches to product design; quality function development, Rapid prototyping

<u>Unit V</u>

Role of computer in product design

Management of manufacturing, creation of manufacturing data base, Computer Integrated Manufacturing, communication network, production flow analysis, Group Technology, Computer Aided product design and process Planning. Integrating product design, manufacture and production control.

<u>Unit VI</u>

Computer Aided Process Planning

Logical Design of a Process Planning - Implementation considerations -manufacturing system components, production Volume, No. of production families - CAM-I, CAPP, MIPLAN, APPAS, AUTOPLAN and PRO

Text Books/ References

- 1. Niebel, B.W., and Draper, A.B., Product design and process Engineering, Mc Graw Hill Kogalkusha Ltd., Tokyo, 1974
- 2. Chitale, A.K, and Gupta, R.C., Product Design and Manufacturing, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- 3. Mahajan, M. Industrial Engineering and Production Management, Dhanpath Rai & Co., 2000.
- 4. Considine,D.M., & Considine,G.D., Standard Handbook of Industrial Automation',-Chapman & Hall, 1986

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

	Self Study	y Paper I : Experimental Technique and Data analysis	
<u>TEACHIN</u>	HING SCHEME EXAMINATION SCHEME		
Lectures	: 04 Hrs/week	Theory	: 60 Marks
		Duration	: 03 Hours
		Internal Assessment	: 40 Marks
		Total Credits	: 04
<u>Unit I</u>			(08 Hours)
Research I	Modeling		
	building, Princ consideration a (b) Heuristics Heuristics, Heu Applications an	cal – Classification of Models, Development of Models, Stag iples of Modelling, Use of Analogy, Models as Approxin nd Testing of Models and Simulation – Definition, Applications and reason iristic Methods and approaches, Meta-Heuristics; Simulation nd Classification of Simulation Models, Process of Simulation, Simulation Experiments and their Validation.	nations, Data s for using a – Meaning,
<u>Unit II</u>			(08 Hours)
Experimer	ntation		
	Principles – experiments; La	egies, Factorial Experimental Design, Applications of Experimental I Replication, Randomization and Blocking, Guidelines aboratory Experiments, Methods of manipulating Variables, Steps in Design of Experiments.	for designing
<u>Unit III</u>			(08 Hours)
Introducti	on to Data and H	Crrors	
		Of Data counts, measurements. Types of er erator.Statistical distributions: Uniform, Binomial, Poisson, ion of means, proportions, population sizes, variances	
<u>Unit IV</u>			(08 Hours)
Hypothesis	s testing		
		hypothesis testing, means, proportions, variances, contingency, g posed model. Use of hypothesis tests to compare products or processes.	
<u>Unit V</u>	F F		(08 Hours)
Design and	l analysis		
	way and two-w	perimental design: randomisation, replication, blocking. Analysis of a analyses, with and without interaction. Cross-classified and not dom effect models. Factorial experiments versus one-at-a time exp	ested forms.
	-	^	(08 Hours)

<u>Unit VI</u>	
Regression analy	5
	and multiple regression analysis. Use of transformation, analysis of residuals, variable on procedures
Text Books/ Refe	ences
23	C.R Kothari, Research Methodology, Methods & Technique; New Age International Publishers, 2004 R. Ganesan, Research Methodology for Engineers, MJP Publishers, 2011 Experimental Methods for Engineers, J. P. Holman, McGraw-Hill Education (2000) ISBN 0071181652. Experimental Methods: An Introduction to the Analysis and Presentation of Data, L. Kirkup, Wiley Text Books (1995) ISBN 0471335797 An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd Edition, J. R. Taylor, University Science Books (1997) ISBN 093570275X.
Unit	est I Unit I,II,III
Unit '	est II Unit IV,V,VI

Self Study Paper I : TRIBOLOGY IN DESIGN

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory : 60 Marks Duration : 03 Hours Internal Assessment : 40 Marks Total Credits : 04

(08 Hours)

(08 Hours)

poiseuille's

viscometers.

theory, Concept of lightly loaded bearings, Petroff's equation, Hydrodynamic Bearings, Pressure development mechanism. Converging and diverging films and pressure induced flow. Reynolds's 2D equation with assumptions. Introduction to idealized slide bearing with fixed shoe and Pivoted shoes. Expression for load carrying capacity. Location of center of pressure.

Newton's Law of viscous forces, Flow through stationary parallel plates. Hagen's

Introduction, Friction, Wear, Wear Characterization, Regimes of lubrication, Classification of contacts, lubrication theories. Newton's Law of viscous forces, Effect of pressure and

<u>Unit III</u> **Hydrostatic Bearings:**

Types of hydrostatic Lubrication systems Expression for discharge, load carrying capacity, Flow rate, Condition for minimum power loss. Torque calculations.

Unit IV

Elasto Hydrodynamic Lubrication:.

Introduction to Elasto - hydrodynamic lubricated bearings. Introduction to 'EHL' constant. Grubin type solution, Different regimes in EHL contact

Unit V

Porous, Gas Bearings and Magnetic Bearings:

Introduction to porous bearings. Equations for porous bearings and working principal, Fretting phenomenon and it's stages. Introduction to gas bearing, Governing Equation, Infinitely long journal bearings, Externally pressurized gas bearing. Introduction to magnetic bearings, Active magnetic bearings. Different equations used in magnetic bearings and working principal. Advantages and disadvantages of magnetic bearings, Electrical analogy, Magneto-hydrodynamic bearings.

Unit VI

Tribo Measurement In Instrumentation:

Surface topography measurements - Electron microscope and friction and wear measurements -Laser method - Instrumentation - International standards - Bearings performance measurements - Bearing vibration measurement.

Text Books/ References

- 1. Cameron, A. "Basic Lubricaton Theory", Ellis Herward Ltd., UK, 1981
- 2. Hulling, J. (Editor), "Principles of Tribology", MacMillan ,1984
- 3. Williams J. A., "Engineering Tribology", Oxford Univ. Press ,1994
- 4. Neale M. J., "Tribology Hand Book ", Butterworth Heinemann, 1995
- 5. Basu S. K., Sengupta S. N., Ahuja B. B., "Fundamentals of Tribology" Prentice Hall of

Unit I

Unit II

Introduction to Tribology:

Hydrodynamic Lubrication:

temperature on viscosity.

(08 Hours)

(08 Hours)

(08 Hours)

India Privata Ltd. New Delhi, 2005

- 6. Mujamdar B. C., "Introduction to Tribology of Bearing", Wheeler Publishing, New Delhi 2001
- 7. Susheel Kumar Srivasthava, "Tribology in industry", S. Chand and Co.
- 8. Dudley D. Fuller, " Theory and practice of Lubrication for Engineers", New York Company 1998
- 9. Moore, "Principles and applications of Tribology", Pergamon press
- 10. Pinkus Stemitch, "Theory of Hydrodynamic Lubrication"
- 11. Gerhand Schwetizer, Hannes Bleuler & Alfons Traxler, "Active Magnetic bearings", Authors working group
- 12. Radixmovsky, "Lubrication of Bearings Theoretical Principles and Design" The 13. Oxford press Company, 2000

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper I : Manufacturing System and Simulation

TEACHING SCHEME

Lectures : 04 Hrs/week

Fundamentals System concept and design

Hierarchical structure, Decision making procedure, System types in manufacturing environments; Manufacturing Systems: Structural aspects, transformational aspects, procedural aspects, integrated manufacturing systems; Modes of Production-Jobbing/Intermittent/ Continuous; Mass Production-Economies of Scale, Optimum production scale, Mass Customization; Multi-Product Small Batch Production- Economies of Scope with Diversification; Logistic Systems- Material flow: conversion / transportation / storage

(08 F

Product / Process Planning and Design

Product Life Cycle, Planning of a new product, Product Design Aspects, Design cost considerations, Concurrent Engineering; Process and Operation Design-Computer Aided Process Planning, Optimum routing analysis using Dynamic Programming and Network Techniques, Criteria for line balancing.

(08 Hours)

(08 Hours)

(08 Hours)

keys, relational

concepts,

Computer Simulation in Manufacturing System Analysis

structures,

hierarchical,

off-line data collection, Automatic data collection systems

Characteristics, Models, applications of probability and statistics; Design and evaluation methodology, General framework, Analysis of situation, Setting objectives, Conceptual modeling, Detailed design, Evaluation and Decision.

operations, query languages; Shop Floor Data Collection Systems-Types of data, on-line and

(08 Hours)

<u>Unit III</u>

Manufacturing Optimization

Criteria for Evaluation, Optimization of single stage manufacturing- Unit production time and cost; Optimization of multistage manufacturing system-Scope, basic mathematical models; Cost Estimating- Classical metal cutting cost analysis, Industrial cost estimation practices, Estimating material, setup and cycle times.

network, Relational-

<u>Unit IV</u>

Unit V

Information Systems in Manufacturing

Database

<u>Unit I</u>

Unit II

EXAMINATION SCHEME

: 60 Marks
: 03 Hours
: 40 Marks
: 04

(08 Hours)

<u>Unit VI</u>

Modern approaches in Manufacturing

Cellular Manufacturing- Group Technology, Composite part, Rank Order Clustering Technique, Hollier method for GT cell layouts; Flexible Manufacturing- Concept, components, architecture; Lean Production concept, principles, Agile Manufacturing- concept, principles and considerations for achieving agility.

Text Books/ References

- 1. Katsudo Hitomi, (1998), "Manufacturing Systems Engineering", Viva Low Priced Student Edition, ISBN 81-85617-88-0
- 2. B. Wu, "Manufacturing Systems Design & Analysis: Context and Techniques" (2/e), Chapman & Hall, UK, ISBN 041258140X
- 3. Mikell P. Groover, (2002), "Automation, Production Systems and Computer Integrated Manufacturing", (2/e), Pearson Education, ISBN 81-7808-511-9
- 4. Radhakrishan P., Subramaniyan S. and Raju V., "CAD / CAM / CIM", (3/E), New Age International Publication
- 5. Luca G. Sartori,(1998), "Manufacturing Information Systems", Addison Wesley Publishing Co.
- 6. N. Viswanadhan & Y, Narhari, (1998), "Performance Modeling of Automated Manufacturing Systems", Prentice Hall of India

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

DISSERTATION STAGE I

TEACHING SCHEME

Practicals : 07 Hrs/week

EXAMINATION SCHEME

Term Work : 25 Marks Practical/Oral : 25 Marks

Total Credits : 15

Stage-I:

The aim of the dissertation work is to carry out research and development work. Every student will be required to choose the topic of dissertation in consultation with the faculty guide.

This stage will include a report consisting of synopsis, the plan for experimental/theoretical work and the summary of the literature survey carried out till this stage.

SEMINAR

TEACHING SCHEME

Practicals : 05 Hrs/week

EXAMINATION SCHEME

Term Work : 25 Marks

Total Credits : 07

The student will be required to choose the topic of seminar on advanced topics based on courses taught in first and second semester and present the work during the seminar.

<u>SEMESTER – IV</u>

Self Study Paper II : CAD/CAM Practices in Metal Forming

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory: 60 MarksDuration: 03 HoursInternal Assessment: 40 MarksTotal Credits: 04

(08 Hours)

Introduction of forming processes. Concept of Formability, formability limits and formability diagram. Wire and Tube Drawing: Introduction rod and wire drawing machines - construction and working. Preparation of stock for wire drawing. Wire drawing dies, material and design. Heat treatment, variables in wire drawing, Maximum reduction in wire in one pass, forces required in drawing. Multiple drawing, work hardening, lubrication in wire drawing. Tube drawing: Methods, force calculation, stock penetration. Lubrication in tube drawing.

<u>Unit II</u>

Forging:

Introduction, classification of forging processes. Forging equipment- Hammers, presses, furnaces etc. construction working capacities and selection of equipment. Basic forging operations such as drawing, fullering edging, blocking etc. Forgability tests, design of forging as a product, friction in forging. Forging defects and the remedies. New technologies: Liquid metal forging, Isothermal forging, No draft forging, P/M forging, Rotary swaging, Roll forging, lubrication in forging.

<u>Unit III</u>

Rolling of Metals:

Scope and importance of rolling. Types of Rolling Mills- construction and working. Roll bite, reduction, elongation and spread. Deformation in rolling and determination forces required. Process variables, redundant deformation. Roll flattening, Roll camber - its effect on rolling process, mill spring. Defects in rolling. Automatic gauge control- Roll pass classification& design. Lubrication in rolling.

<u>Unit IV</u>

Sheet Metal Working:

Sheet Metal properties, gauges and surface conditions. Study of presses and equipments used, various cutting and forming operations, types of dies used, force requirement, theory of shear, methods of force reduction, defects, lubricants used. Miscellaneous sheet metal working operations: Metal spinning, fine blanking, coining, embossing, rubber forming, stretch forming.

Design of Press Tools:

General classification and components of press tools, types of dies simple,compound, combination dies, various press working operations such as punching, blanking, deep drawing, bending, forming etc. Design and calculations for above press working

<u>Unit I</u>

Introducti

Fundamentals of Material Forming:

(08 Hours)

(08 Hours)

<u>Unit V</u>

Extrusion:

Types: Direct, reverse, impact, hydrostatic extrusion. Dies for extrusion, stock penetration. Extrusion ratio of force equipment (with and without friction), metal flow in extrusion, defects. Role of friction and lubricants. Manufacture of seam-less tubes.Advanced Metal Forming Processes:

High velocity forming- principles, comparison of high velocity and conventional forming processes. Explosive forming, Magnetic pulse forming, Electro hydraulic forming. Stretch forming, Coining Embossing, Curling, Spinning, Flow forming advantages, limitations and application of the process.

(08 Hours)

<u>Unit VI</u>

Finite-Element Method

Basics of Metal Forming and Finite-Element Method - Comparison of Finite-Difference and Finite Element Methods with Analytical Solutions - Spatial Discretization - Shape Functions - Assembly of the Stiffness Matrix. Finite Elements for Large Deformation - Solution of Linear Finite-Element Systems and Nonlinear Finite-Element Systems, Typical Finite Elements.

Text Books/ References

- 1. Dieter, "Mechanical Metallurgy"
- 2. P. N. Rao, "Manufacturing Technology", Tata McGraw Hill
- 3. G.W. Rowe, "Principles of Industrial Metal Working Process", Edward Arnold
- 4. Dr. R. Narayanswamy, "Metal Forming Technology", Ahuja Book Co
- 5. Surender Kumar, "Principles of Metal Working"
- 6. "ASM Metal hand book Vol: 4 forming"
- 7. Shiro Kobayanshi, Soo Ik oh and Taylan Atlan , "Metal Forming and Finite Element Method", Oxford pub, 1992.
- 8.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II : Optimization Techniques

TEACHIN	NG SCHEME EXAMIN	NATION SCHEME
Lectures	Du: Internal Assess	Theory: 60 Marksration: 03 Hourssment: 40 MarksTredits: 04
<u>Unit I</u>		(08 Hours)
Introducti	on to Optimization	
	Statement of an Optimization Problem - Design Vector, Design Constraint Constraint Surface, Objective Function, Objective Function Surfaces.Classificat of Optimization Problems - Classification Based on the Existence of Constraint Nature of the Design Variables, Physical Structure of the Problem, Nature of the Equations Involved, Permissible Values of the Design Variables, Determin Nature of the Variables, Separability of the Functions and Number of Objective Functions	tion ts, e iistic
<u>Unit II</u>		(08 Hours)
One-Dime	nsional Unconstrained Minimization	
	Introduction, Theory Related to Single Variable (Univariate) Minimization Unimodality and Bracketing the Minimum, Fibonacci Method, Golden Sec Method, Polynomial-Based Methods.Programming using MATLAB	
<u>Unit III</u>		
Unconstra	ined Optimization	
<u>Unit IV</u>	Introduction Necessary and Sufficient Conditions for Optimality Convexity Basic Concepts: Starting Design, Direction Vector, and Step Size. The Ste Descent Method The Conjugate Gradient Method Newton's Method Quasi Newton Methods Approximate Line Search Using MATLAB	-
Stochastic	Programming	
	Introduction, Basic Concepts of Probability Theory, Stochastic Lin Programming, Stochastic Nonlinear Programming and Stochastic Geometr Programming	
<u>Unit V</u>		(08 Hours)

Modern Methods of Optimization

Genetic Algorithms, Simulated Annealing, Particle Swarm Optimization, Neural-Network-Based Optimization and Ant Colony Optimization

(08 Hours)

<u>Unit VI</u>

Multiobjective Optimization

Introduction, Concept of Pareto Optimality, Generation of the Entire Pareto Curve. Methods to Identify a Single Best Compromise Solution .

Text Books/ References

- 1. Singeresu S. Rao, Engineering Optimization-Theory and Practice, New Age
- 2. International Limited Publishers.
- 3. J. S. Arora, Introduction to Optimum Design, McGraw Hill, New York
- 4. S. S. Stricker, Optimizing Performance of Energy Systems, Battelle Press, New York.
- 5. Ashok D. Belegundu and Tirupathi R. Chandrupatla Optimization concepts and applications in engineering

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II: Robotics and Sensors

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

Brief History, Basic concepts, Three laws of Robotics, Robot and Robotic mechanism, Automation and Robotics, Need for industrial Robots, Robot generations, Robot anatomy ,Classification, Robot performance parameters, Socio-Economic aspects of Robotisation.

(08 Hours)

<u>Unit II</u> Grippers

Introduction, types of end effectors, types of grippers, tools as end effectors, Guidelines for design of robotic gripper, force analysis of mechanical pneumatic and hydraulic grippers.Robot DrivesIntroduction, Classification of Drives, Characteristics of Drives, Types of Drives, Comparison of Driver system, Actuation Schemes, Reduction and Transmission Systems.

(08 Hours)

Unit III

Sensors and Controllers

Internal and external sensors, position, velocity and acceleration sensors, proximity sensors, force sensors, laser range finder. Robot vision: image processing fundamentals for robotic applications, image acquisition and pre-processing. Segmentation and region characterization object recognition by image matching and based on features.

Unit IV

Kinematics

Introduction, Rotation and Transformation, Denavit-Hartenberg Parameters, Mapping revisited, Forward kinematics, Inverse kinematics.

Unit V

Vision System for Robotics

Introduction, Need, Robot Vision System - Levels of processing, Functions of Machine Vision System, Image Acquisition, Sampling , Image Processing, Image Processing Technique, Edge detection, A typical vision system for robot, System hardware and function.

(08 Hours)

Unit VI

Robot Programming

Unit I

Introduction

(08 Hours)

Robot languages: AL, AML, RAIL, RPL, VAL, Demonstration of points in space : Continuous path (CP), Via points (VP), Programmed points (PP).

Text Books/ References

- 1. Groover, Weiss, "Industrial Robotics", Tata McGraw-Hill.
- 2. Fu Ks, Rc Congalez and CSG Lee, "Robotics- Control, Sensing, Vision and Intelligence", Tata McGraw Hill.
- 3. Koren Yoram, "Industrial Robotics", Tata McGraw-Hill.
- 4. Puranik M.T. and P.R.Ghorpade, "Robotics Fundamental", Nirali Publication, Pune.
- 5. Spong M.W., S. Hutchrison and M. Vidyasagar, "Robot Modelling and Control", Willey-2006.
- 6.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II: Rapid Prototyping

Need - Development of RP systems - RP process chain - Impact of Rapid Prototyping on Product Development -Digital prototyping - Virtual prototyping-Rapid Tooling - Benefits-

Basic concept- Digitization techniques - Model Reconstruction - Data Processing for Rapid Prototyping: CAD model preparation, Data Requirements - geometric modeling techniques: Wire frame, surface and solid modeling - data formats -Data interfacing, Part orientation and

Applications, materials used in rapid prototyping

support generation, Support structure design.

materials, advantages, limitations and applications.

TEACHING SCHEME

Unit I

<u>Unit II</u>

Unit III

Introduction

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	:	60 Marks
Duration	:	03 Hours
Internal Assessment	:	40 Marks
Total Credits	:	04

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

Unit IV

Solid Based Rapid Prototyping System

Liquid Based Rapid Prototyping

Reverse Engineering and CAD Modeling

Solid Ground Curing (SGC): working principle, process, strengths, weaknessesand applications.Fused deposition Modeling (FDM): Principle, details of processes, process variables, types, products, materials and applications

Stereolithography (SLA): Apparatus: Principle, per-build process, part-building, post-build processes, photo polymerization of SL resins, part quality and process planning, recoating issues,

Unit V

Powder Based Rapid Prototyping Systems

Selective Laser Sintering(SLS): Principle, process, Indirect and direct SLS- powderstructures, modeling of SLS, materials, post processing, post curing, surface deviation and accuracy, Applications. Laser Engineered Net Shaping(LENS): Processes, materials, products, advantages, limitations and applications- Case Studies.

Unit VI

Other Rapid Prototyping Technologies

Three dimensional Printing (3DP):Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based and powder based 3DP systems, strength and weakness, Applications and case studies. Examples and case studies

Text Books/ References

- 1. Rapid prototyping: Principles and applications, second edition, Chua C.K., Leong K.F and Lim C.S., World Scientific Publishers, 2003.
- 2. Rapid prototyping, Andreas Gebhardt, Hanser Gardener Publications, 2003
- 3. Rapid Prototyping and Engineering applications : A tool box for prototypedevelopment, Liou W.Liou, Frank W.Liou, CRC Press, 2007.
- 4. Rapid Prototyping: Theory and practice, Ali K. Kamrani, Emad Abouel Nasr, Springer, 2006.
- 5. Rapid Tooling: Technologies and Industrial Applications, Peter D.Hilton,Hilton/Jacobs, Paul F.Jacobs, CRC press, 2000

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II : Design for Manufacture

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

General design principles for manufacturability, strength and mechanical factors, mechanisms selection, evaluation method, geometrical tolerances, tolerance control and utilization. Economic Use of Raw Materials: Ferrous steel, hot rolled steel, cold finished steel, stainless steel, non ferrous materials aluminum, copper, brass, non metallic materials, plastics, rubber and composites (08 Hours)

Components Design I

Metal extrusion, metal stamping, fine blanking, four slide parts, spring and wire forms, spun metal parts, cold headed parts, extruded parts, tube and section bends, rolled formed parts, power metal parts, forging electro forming parts, specialized forming methods, turned parts, machined round holes, drilled parts, milled parts.

(08 Hours)

<u>Unit III</u>

Components Design II

Planned shaped and slotted parts, screw threaded contoured and internal ground parts, center less ground, electrical discharged, rolled furnished parts, electro chemical and advanced machine parts. Sand cast, die cast, investment cast and other cast products.Non Metallic Components DesignThermosetting plastic, injection moulded and rotational moulded parts, blow moulded, welded plastic articles, ceramics

<u>Unit IV</u>

Composite Materials

Introduction, Classification of composites, Types of composite, Properties, Metal matrix composite, Ceramic matrix composite, Fiber Reinforced plastic, Manufacturing methods, Applications in Different field. Ceramic, Properties and applications of ceramics. Manufacturing of ceramics.

Unit V

Assembled Parts Design I

Welded parts, arc, resistance, brazed and soldered parts, gear box assembly, bearing assembly.

<u>Unit I</u>

Unit II

Introduction

(08 H

(08 Hours)

<u>Unit VI</u>

Assembled Parts Design II

Retension, bolted connection, screwed connections, flanged connections, centred connections, press fitted connections, surface finishing, plated parts, heat treated parts, NC machining, group technology, low cost automation, computer aided manufacture, product design requirements.

Text Books/ References

- 1. James G. Bralla, —Hand book of product design for manufacturing McGraw Hill Co., 1986
- 2. K.G. Swift Knowledge based design for Manufacturel, Kogan page Limited, 1987.
- 3. S H Avner, Physical Metallurgy, McGraw Hill Publication

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

(08 Hours)

Self Study Paper II : Theory of Elasticity & Plasticity

TEACHING SCHEME

Lectures : 04 Hrs/week

<u>Unit I</u>

Basic Concepts of Stress

Definition, State of Stress at a point, Stress tensor, invariants of stress tensor, principle stresses, stress ellipsoid, derivation for maximum shear stress and planes of maximum shear stress, octahedral shear stress, Deviatoric and Hydrostatic components of stress, Invariance of Deviatoric stress tensor, plane stress.

<u>Unit II</u>

Basic concepts of Strain

Deformation tensor, Strain tensor and rotation tensor; invariants of strain tensor, principle strains, derivation for maximum shear strain and planes of maximum shear strain, octahedral shear strain, Deviatoric and Hydrostatic components of strain tensor, Invariance of Deviatoric strain tensor, plane strain.

Unit III

Generalized Hooke's Law

Stress-strain relationships for an isotropic body for three dimensional stress space, for plane stress and plane strain conditions, differential equations of equilibrium, compatibility equations, Material (D) matrix for Orthotropic Materials.

<u>Unit IV</u>

True stress and true strain

Von-Mise's and Tresca yield criteria, Haigh–Westergard stress space representation of von - Mise's and Tresca yield criteria, effective stress and effective strain, St. Venants theory of plastic flow, Prandtle–Reuss and Levy–Mise's constitutive equations of plastic flow, Strain hardening and work hardening theories, work of plastic deformation.

<u>Unit V</u>

Analysis methods

Slab method, Slip line field method, uniform deformation energy method, upper and lower bound solutions. Application of Slab method to forging, wire drawing, extrusion and rolling processes.

<u>Unit VI</u>

Stresses in flat Plate

Stresses in circular and rectangular plates due to various types of loading and end conditions buckling of plates

Text Books/ References

- 1. Timoshenko and Goodieer, Theory of Elasticity, Mcgraw Hill Publications 3Rd Edition,
- 2. Madleson, Theory of Plasticity,
- 3. J. Chakrabarty, Theory of Plasticity, 2 nd edition, McGraw Hill Publications 1998
- 4. George E Dieter, Mechanical Metallurgy, McGraw Hill Publications 1988

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II : Design of Dies

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

Design principles

Unit I

Design principles for dies of thermo-plastic and thermo-setting components. Impression core cavities, strength of cavities, guide pillars and bushes, ejection systems, cooling methods, bolster types. Split moulds, methods of actuating the splits, moulds of threaded components, internal & external under cuts, moulds with under – feed systems. Design principles and standards for Transfer and compression moulding dies. Design of Tools: Mould for a spindle component with sleeve, pin ejection. Mould with splits Multi-cavity mould with stripper plate, inserts, and ejectors.

<u>Unit II</u>

Unit III

Specifications & Elements of Blow Moulding

Design of Dies for metal mould Castings

Determination of number of cavities, types of cooling system, design of cooling channels, heat transfer considerations, types of ejectors, determination of mould opening force & ejection force, use of CAD for mould design, defects and remedies

(08 Hours)

(08 Hours)

Design of Dies for metal mould Castings, Die casting, Shell moulding. Design of casting cavity, sprue, slug, fixed and movable cores, finger cam, core, pin, draft, ejector pins, ejector plate, gate, goose-neck, nozzle, over-flow, platen plunger, runner, slot, slide, vent, water line. Design of hot chamber, cold chamber machines, vertical, horizontal,, die locking machines, toggle and hydraulic systems, injection systems, rack and pinion, knockout pins and plates, hydraulic ejection, Other parts of die casting machines

Unit IV

Design of various types of dies

Design of various types of dies – Single cavity, multi cavity, combination, unit dies. Alignment of dies with sprue. Design approach for die elements. Selection of materials and heat treatment for die casting dies and elements – die casting alloys – types of die casting alloys, Case studies on executed dies and design details. Finishing, Trimming, and inspection. Gravity die casting – Die design with cores and inserts – Bulk forming tools.Mould flow analysis.Softwares used for Die Design.

<u>Unit V</u>

Open die forging

(08 Hours)

Open die forging, Advantages of open die forging over closed die forging. Calculation of allowances and tolerances. Methods of open die forging. Design of dies. Closed die forging. Preparation of material for forging. Calculation of raw-stock, cutting off, heating in furnaces. Allowances and tolerances for closed die forging as per IS: 3469 1974.

(08 Hours)

Unit VI

Die blocks for forging operations

Die blocks for forging operations. Design of fuller impression, Roller impression, Bender impression, Blocker impression, Finisher impression. Swaging tools. Planning layout of multi impression dies. Flash and cutter calculations –additional operations on forging, piercing, and trimming dies, coining dies. Horizontal forging machines. Design of upsetting dies. Calculations on upsetting dies

Text Books/ References

- 1. Rusinoff S.E., Forging & Forming Metals, Taraporewala, Bombay, 1952.
- 2. Dochlar H.H., Die Casting Dies, McGrawhill, 1951.
- 3. I.S. Standards, BSI., New Delhi.
- 4. Pye R.G.W., Injection Mould Design, Longman scientific & Technical Publishers, London, 1989.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II : Integrated Product Design & Development

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

(08 Hours)

(08 Hours)

Introduction

Unit I

Definition and morphology of product design (seven phases), standardization, simplification and specialization in product design, modern approaches-concurrent design and quality function deployment, product development, product development versus product design, types of design and redesign, modern product development process, product development team and product development planning with reference to ISO standard, difference between product verification and production validation.

<u>Unit II</u>

Product Development – Technical and Business Concerns

Technology Forecasting and Technology S-Curve (Technology Stage), Mission Statement and Technical Questioning, Economic Analysis of Product, Customer Needs and Satisfaction, Customer Population and Market Segmentation, Customer Needs-Types and Models, Gathering Customer Needs Information, Analysis of Gathered Information.

<u>Unit III</u>

Product Development from Concept to Product Function

Generating concepts, information gathering, and brainstorming, morphological analysis, concept selection-design evaluation, estimation of technical feasibility, concept selection process, Pugh,,s concept, selection charts, numerical concept scoring, process of concept embodiment, system modeling, FMEA, functional modeling and decomposition, fast method, subtract and operate procedure, establishing system functionality, augmentation and aggregation.

Unit IV

Product Development in the Context of Reverse Engineering

Product Teardown Process, Tear Down Methods - Force Flow Diagrams, Measurement and Experimentation, Applications of Product Teardown, Benchmarking Approach and Detailed Procedure, Tools Used In Benchmarking -Indented Assembly Cost Analysis, Function - Form Diagrams, Trend Analysis, Setting Product Specifications, Introduction to Product Portfolio and Architecture.

<u>Unit V</u>

(08 Hours)

(08 Hours)

Design for Manufacture, Assembly and Environment

Design guidelines, design for manufacture, design for assembly, design for piece part production,

manufacturing cost analysis, need and importance of design for environment, global, local and regional issues, basic DFE methods-guidelines and applications, life cycle assessment - basic method, weighed sum assessment method, life cycle assessment method, DFX, product testing, product validation, field trials, virtual trials, iterations.

(08 Hours)

<u>Unit VI</u>

Product development Methodology:

Integrated product development process invariant, Integrated product development process, steps in IPD methodology, Product requirement planning and management, problem identification and solving methodology

Text Books/ References

- 1. K. Chitale; R.C. Gupta, Product Design and Manufacturing, Prentice Hall India.
- 2. Effective Product Design and Development, Stephen Rosenthal, Business One Orwin, Homewood, 1992, ISBN, 1-55623-603-4
- 3. Tool Design Integrated Methods for successful Product Engineering, Stuart Pugh,Addison Wesley Publishing,Neyourk,NY,1991,ISBN 0-202-41639-5
- 4. Concurrent Engineering Fundamentals volume II Integrated Product development,Biren Prasad,Prentice Hall International series in Industrial and system Engineering
- 5. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw Hill International Edns.1999
- 6. Dieter George E., Engineering Design McGraw Hill Pub. Company, 2000
- 7. Kevin Otto and Kristin Wood, Product Design: Techniques in Reverse Engineering and New Product Development, Pearson Education Inc.
- 8. Grieves, Michael, Product Lifecycle Management McGraw-Hill, 2006. ISBN 0071452303
- 9. Bralla, James G., Handbook of Product Design for Manufacturing, McGraw Hill Pub. 1986

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II : Design for Manufacturing & Assembly

TEACHING SCHEME

Lectures : 04 Hrs/week

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

Introduction

Design philosophy – steps in Design process – General Design rules for manufacturability – basic principles of designing for economical production –creativity in design. Application of linear & non-linear optimization techniques.Materials: Selection of Materials for design – Developments in Materialtechnology – criteria for material selection – Material selection interrelationship with process selection – process selection charts.Philosophy for design for X.

<u>Unit II</u>

Machining Process

Overview of various machining processes – general design rules for machining -Dimensional tolerance and surface roughness – Design for machining – Ease –Redesigning of components for machining ease with suitable examples. General design recommendations for machined parts.

<u>Unit III</u>

Metal Casting

Appraisal of various casting processes, selection of casting process, - general design considerations for casting – casting tolerances – use of solidification simulation in casting design – product design rules for sand casting.

(08 Hours)

Metal joining

Unit IV

Appraisal of various welding processes, Factors in design of weldments – general design guidelines – pre and post treatment of welds – effects of thermal stresses in weld joints – design of brazed joints. Forging – Design factors for forging – Closed die forging design – parting lines of dies drop forging die design – general design recommendations

<u>Unit V</u>

Extrusion and sheet Metal work

Design guidelines for extruded sections - design principles for Punching, Blanking, Bending, and Deep Drawing – Keeler Goodman Forming Line Diagram –Component Design for Blanking.

(08 Hours)

(08 Hours)

<u>Unit I</u>

(08 Hours)

<u>Unit VI</u>

Plastics

Visco-elastic and creep behavior in plastics – Design guidelines for Plastic components – Design considerations for Injection Moulding – Design guidelines for machining and joining of plastics Assembly: Compliance analysis and interference analysis for the design of assembly Design and development of features for automatic assembly – liaison diagrams.Influence on the productivity and cost.

Text Books/ References

- 1. A K Chitale, R C Gupta " Product Design and Manufacturing", PHI, New Delhi, 2003
- 2. George E Deiter, "Engineering Design", Mc GrawHills Intl, 2002.
- 3. John Cobert, "Design for Manufacturing", Addison Welsely, 2000.
- 4. Surender Kumar and Gautham S., "Design and Manufacturing", Oxford & IBH Publishing Co Pvt Ltd, New Delhi, 1998.
- 5. Material Selection and Design Handbook, Vol 20, ASM International, 1997.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

Self Study Paper II : Concurrent Engineering

TEACHING SCHEME

Lectures : 04 Hrs/week

Background

Product Life Cycle Management :

activity,

and

CE

Computer based Support, CE Implementation Process.

challenges

concurrent objectives of CE, benefits of CE.Sequential engineering.

organizational,

EXAMINATION SCHEME

Theory	: 60 Marks
Duration	: 03 Hours
Internal Assessment	: 40 Marks
Total Credits	: 04

(08 Hours)

(08 Hours)

environment, sequential

team composition and duties,

(08 Hours)

(08 Hours)

(08 Hours)

Quality Function Deployment:

CE

Industrial Design, Quality Function Deployment, house of quality, Translation process of quality function deployment (QFD). Modeling of Concurrent Engineering Design: Compatibility approach, Compatibility index, implementation of the Compatibility model, integrating the compatibility Concerns.

faced by modern production

engineering process, Concurrent engineering definition and requirement, meaning of

Life cycle design of products, life cycle costs. Support for CE: Classes of support for

structure

CE,

Unit IV

Design for Manufacture (DFM):

Introduction, role of DFM in CE, DFM methods, e.g. value engineering, DFM guidelines, design for assembly, creative design methods, product family themes, design axioms, methods. Computer based approach to DFM. Evaluation Taguchi design of manufacturability and assimilability

Unit V

Quality by Design:

Quality engineering & methodology for robust product design, parameter and Tolerance design, Quality loss function and signal to noise ratio for designing the quality, experimental approach.

Unit II

Unit I

Introduction:

Unit III

<u>Unit VI</u>

Design for X-ability:

Design for reliability, life cycle serviceability design, design for maintainability, design for economics, decomposition in concurrent design, concurrent design case studies.

Text Books/ References

- 1. Concurrent Engineering- Kusiak John Wiley & Sons
- 2. Concurrent Engineering- Menon Chapman & Hall
- 3. David M. Anderson, Design For Manufacturing And Concurrent Engineering, CIM press, 2004
- 4. G. H. Haung, Design for X: Concurrent Engineering Approach, Chapman & Hall, 1996.
- 5. Shina, S.G., Concurrent Engineering and Design for Manufacture ofElectronics Products, Van Nostrand Reinhold, New York, 1991.

Unit Test I	Unit I,II,III
Unit Test II	Unit IV,V,VI

DISSERTATION STAGE II

TEACHING SCHEME

Practicals : 10 Hrs/week

EXAMINATION SCHEME

Term Work : 150 Marks Pract/Oral : 75 Marks Total Credits : 32

Stage-II:

This stage will include comprehensive report on literature survey, design and fabrication of experimental set up and / or development of model, relevant computer program. The student is require to publish at least one national/international paper based on the dissertation work. The publication / accepted paper for publication shall be included in the report.

Student has to submit the authentic copy of dissertation Stage-I report.